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Abstract

This doctoral thesis presents a complete framework for automated detection of anoma-
lies in clinical thermal IR images. Within that framework, it addresses two funda-
mental problems: the automated segmentation of a main object from the background;
and the automated extraction of relevant, potentially abnormal Regions of Interest.
A first segmentation approach called cued morphological processing of edge maps
(CMpEm) is introduced, that uses a minimum amount of a priori information about
a region to constrain the morphological processing of edge components. It is shown to
outperform existing segmentation methods, especially when dealing with faint regions
in challenging conditions. A second segmentation approach based on the classifica-
tion of edge components is presented that is able to recover missing contours when
other methods fail. A third segmentation strategy based on a rule-based fusion and
morphological post—processin;g of segmented contours from different techniques is pro-
posed and shown to improve significantly the performance of the global segmentation
task. Furthermore, a new approach for automated extraction of anatomical Regions
of Interest in clinical IR images is introduced. It is based on a robust landmark
identification algorithm that produces more accurate landmark locations on smooth
contours than state-of-the-art algorithms. Various aspects of the anomaly detection
framework, including blind extraction of potentially abnormal Regions of Interest, al;e
tested on a collection of thermal IR databases acquired in the course of this thesis,

in order to demonstrate the key advantages of the framework.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgements

I would like to express my gratifude to my thesis supervisors Dr. Monique Frize
and Dr. Rafik A. Goubran for their guidance, for their support, both academic and
financial, and for their most helpful advice throughout my doctoral studies.

I am thankful to Dr. Victor Aitken and Dr. Richard Dansereau from the De-
partment of Systems and Computer Engineering, Dr A.O. Abd El Halim from the
Department of Civil and Environmental Engineering, Dr. Robert Aime Leblanc from
the Université de Montréal and Dr. Pierre Payeur from the University of Ottawa for
their willingness to act as committee members and for their helpful comments and
advice.

I would also like to thank the many friends and fellow graduate students I have
had the privilege to know while working on my thesis, and the helpful technical and
administrative staff from the Department of Systems and Computer Engineering.
Last but not least, I am truly grateful to my family, my wife Melanie and my son

Louis-Gabriel for their love, support and infinite patience.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents

1 Introduction 1
1.1 Motivation . . . . . . ... ... 1
1.2 Thesis Objectives and Definition of the Problem . . . . . .. ... .. 3
1.3 ThesisOutline. . . . . . ... ... ... . ... ... 5

2 Background Review 7
2.1 Infrared Imaging . . .. ... . . . . . . . . . ... 7

2.1.1 Clinical Infrared Thermography . . . . . . ... ... ... .. 10
2.1.2  Applications and Specificities of Infrared Imaging . . . . . . . 15
2.2 Infrared Image Processing . . ... ... ... I 16
2.2.1 Preprocessing . . . . . ... ... ... 16
2.2.2 Segmentation . . ... ... ... ... 18
2.2.3 Extraction of Anatomical Regions of Interest . . . . . ... .. 21
2.2.4 Extraction of Other Regions of Interest . . . . . ... .. ... 26
2.25 Choice of Features . . . . . ... ... .. ... ........ 28
2.2.6 Summary of Infrared Image Processing . . . . ... ... ... 30
2.3 Anomaly Detection in Infrared Imaging . . . . . .. .. ... ... .. 31
2.3.1 Statistical Techniques . . . . . . .. .. ... ... ....... 32
vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3.2 Artificial Neural Network (ANNs) Techniques . . ... .. .. 35

2.3.2.1 Multilayer Perceptrons . . . . .. .. .. ... .... 35

2.3.2.2 Radial Basis Function Networks . . . . . . . 37

2.3.2.3 Support Vector Machines (SVMs) . . . . .. ... .. 40

2.3.2.4 Self-Organizing Networks . . ... ... ....... 42

2.3.3 Dimension Reduction Methods . . .. ... ... ... .... 44

2.3.4 Summary of Anomaly Detection Techniques . . ... ... .. 46

3 Processing Architecture 47

3.1 Overview of Anomaly Detection Architecture. . . . . .. ... .. .. 47

3.2 Preprocessing . . .. . ... ... 52

3.3 Segmentation . . ... ... ... .. 52

3.3.1 Cued Morphological Processing of Edge Maps . . . . ... .. 55

3.3.2 Classification of Edge Components . . ... ... ....... 59

3.3.3 Region-Based Segmentation . ... .. ... .......... 63

3.3.4 Segmentation Decision Fusion Process . . ... ...... .. 65

3.3.5 A Particular Case: Breast Segmentation . . ... ....... 69

3.4 Identification of Anatomical Landmarks . . ... ... ... ... .. 72

3.4.1 Stage 1: Curvature Analysis of Entire Contour . . . . . . . . . 74

3.4.2 Stage 2: Analysis of Distance Contours . . . . . ... ... .. 76

3.4.3 Stage 3: Region Specific Constraints . . . ... ... ... .. 77

3.4.4 Summary of Landmark Detection Approach . . .. ... . .. 81

3.5 Extraction of Anatomical Regions from Key Landmarks. . . . . . . . 81

3.6 Determination of Potential Anomalous Regions of Interest . . . . . . 85

3.7 Choice of Features . . . . .. ... .. ... .. ... .. .. ..... 88
vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.8 Summary of Proposed Approaches . . . . . .. ... ... ... ....

4 Data Collection

4.1 Infrared Technology . . . . . .. . ... ... ... ... . .......

4.2 Infrared Backgrounds and Synthetic Images . . .. ... ... ....

4.3 Databases of Infrared Images . . . ... ... ... ... .. .....

4.3.1
4.3.2
4.3.3
434

Pianist Database . ... ... ... ... .. ... .......
Computer User Database . . . . . ... ... ... .......

Foot Database . . . . . . . . . .. . . . . .. ... ...

5 Segmentation Results

5.1 Segmentation of Extremities . . . . . . . ... ... ... .. .....

5.1.1

5.1.2

5.1.3

Algorithms Tested and Parameters Used . . .. ... ... ..
5.1.1.1 FCM parameters . . . .. ... ... ... ......
5.1.1.2  Level-Set Active Contour . . . ... ... ......
5.1.1.3 SVM and ANN Classification of Edge Components .
5.1.1.4  Cued Morphological Processing of Edge Maps . . .

Results on Synthetic Images for Individual Methods . . . . . .
Results on Real Infrared Images . . . . . . .. .. ... .. ..
51.3.1 Decision Fusion . . . . .. oo oo

5.1.3.2 Tables of Results from Hand and Foot Databases . .

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92
92
96
98
99
100
102
103
103
105
105

107
107
108
108
109
109
113
114
122
123
126



5.2 Selected Results on Breast Segmentation . . . . . ... ........ 138
6 Landmark Localization Results 143
6.1 Algorithms Tested and Parameters Used . . ... ... ........ 143
6.2 Landmark Localization Distance Results . . . . . ... .. ... ... 146
6.3 [Extraction of Clusters of Interest . . . .. ... .. ... ....... 153
7 Applications 159
7.1 Musculoskeletal Disorders . . . . .. ... .. ... ... ....... 159
7.1.1 Playing-Related Musculoskeletal Disorders . . . ... ... .. 159
71.1.1 Warm-up . ... ... ... 161
7.1.1.2  Evolution of the Temperature of the Palm . . . . . . 162
7.1.1.3  Evolution of the Temperature of the Upper-arm . . . 164
7.1.2 Repetitive Strain Injuries in Computer Users . . . . . . .. .. 167
8 Conclusion 169
81 Conclusion . . . . . . . . . ... 169
8.2 Suggested Future Work . . . . . . ... ... L. 172
A 198
A.1 Thermographic Protocol . . . ... ... ... ... .......... 198
A2 Questionnaires . . . .. ... ... ... 199
A.2.1 RSIQuestionnaire . . . . . . . ... ..., 199
A.2.2 Pianist Questionnaire . . . . . .. .. ... ... ... ... 208

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.1 Moment Invariants . . . ... ... ... ... .. ... . ... .. 211
B.1.1 Central moments . . . ... ... ... .. .. ......... 211
B.1.2 Hu'sMoments. . . .. ... ... ... .. ... .. ...... 211
B.1.3 Maitra’s moment invariants . . . ... ... ... ... .. .. 213
B.1.4 Zernike moments . . . ... ... ... ... .. ... .. ... 213

X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Tables

3.1

5.1
5.2
5.3
5.4
5.5
5.6
9.7
5.8
9.9

6.1
6.2
6.3

7.1

Summary of features . . . . . ... ..o L oL 89
Confusion matrices for both SVM kernels on training database . . . . 111
Confusion matrix for MLP on training database . . .. ... ... .. 113
Cued Morphological Processing of Edge Maps parameters . . . . . . . 113
Confusion matrices on hand database . . . . . ... ... ... .... 123
Summary of confusion matrices results (hand) ............. 124
Confusion matrices on foot database . .. .. ... ....... ... 125
Summary of confusion matrices results (foot) . . . . . ... ... ... 125
Average agreement between methods . . . . .. ... .. ... .... 125
Segmentation computation times . . . . . . ... .. ... ... ... 139
Kovesi’s phase congruency parameters . . .. .. ... .. e 146
CSS method parameters . . . . . .. ... ... ... .. ....... 146
Landmark distances to ground truth for all algorithms tested. . . . . 148
Comparison temperature left/right palm . . . . ... ... ... ... 168
xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Figures

2.1 Exampleofdenoising . . . ... ... .. ... ... ... ... . ...

3.1 Overview of IR anomaly detection architecture . . . . . . ... . ...
3.2 First type of segmentation . . . ... ... ... ... ... ......
3.3 Second type of segmentation . . . . . ... .. .. ... ... ...
3.4 Cued morphological processing overview . . . . . . ... ... ....
3.5 Hand segmentation example . . . . ... ... ... ... .......
3.6 Distance between symmetrical contours . . . . .. ... ... .....
3.7 Hand region specific anatomical landmarks . . . . . ... ... .. ..
3.8 Dorsal upper-arm superficial muscles . . . . ... ... ... .....
3.9 Dorsal view, arm superficial muscles . . . . . . ... ... ... ....
3.10 Anterior upper-arm superficial muscles . . . . ... .. ... ... ..
3.11 Anterior view, arm superficial muscles . . . . .. ... ... ... ..

3.12 Hand and back anatomical ROIs examples . . . . ... ... .....

4.1 Infrared cameras . . . . .. ... ... ... ...
4.2 Experimental setup example . . . . . . ... ... ... ...
4.3 Synthetic hand on real IR backgrounds . . . . ... ... .......

4.4 Typical IR hand images difficult to segment. . . . . . ... ... ...

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.5

9.1
5.2
9.3
5.4
5.5
5.6
9.7
5.8
5.9
9.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

Example of difficult foot images. . . . . ... ... ... ... ... .. 106

Percentage of agreement for background 1 . . .. ... ... ..... 115
Percentage of agreement for background 2 . . . ... .. ... .... 115
Percentage of agreement for background 3 . . . . ... ... ... .. 116
Percentage of agreement, background 1, modified 2 cluster FCM . . . 117
Percentage of agreement, background 2, modified 2 cluster FCM . . . 118
Percentage of agreement, background 3, modified 2 cluster FCM . . . 118
Comparison of algorithms: synthetic image on background 3 . . . . . 119
Percentage of agreement, background 1, modified 3 cluster FCM . . . 120
Percentage of agreement, background 2, modified 3 cluster FCM . . . 121
Percentage of agreement, background 3, modified 3 cluster FCM . . . 121
Hand database segmentation results for 90% agreement. . . . . . . . . 127
Hand database segmentation results for 80% agreement. . . . . . . . . 128
Hand database segmentation results for 70% agreement.. . . . . . . . 128
Foot database segmentation results for 90% agreement. . . . . . . .. 129
Foot database segmentation results for 80% agreement. . . . . . . .. 130
Foot database segmentation results for 70% agreement. . . . . . . . . 130
Comparison of algorithms for segmented hand IR image 1. . . . . . . 132
Comparison of algorithms for segmented hand IR image 2. . . . . . . 133
Comparison of algorithms for segmented foot IR image . .. ... .. 134
Comparison of algorithms with fusion method . . . .. ... ... .. 135
Breast segmentation, typical results. . . ... ... ... ... . ... 140
Breast segmentation, typical results. . . . .. ... ... ... .... 141

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6.1 Examples of arm landmarks . . . .. ... .. ... ... ....... 150

6.2 Examples of hand and back landmarks . . . . ... ... ....... 151
6.3 Back landmark points for different methods . . . ... ... ... .. 152
6.4 Extraction of clusters of interest 1. . . . . ... ... ... ...... 153
6.5 Featureimages. . . . . . . . . . ... ... 155
6.6 Extraction of clusters of interest 2. . . . . . . ... ... ... .... 156
6.7 Featureimages. . . . . . . . . . ... ... 157
6.8 Asymmetry analysis. . . . . . .. .. .o 158
7.1 Temperature evolution of the palm . . . . . ... ... ... ..... 163
7.2 Temperature evolution of the palm . . . . ... .. .. ... ..... 164
7.3 Evolution temperature muscles of upper arm . . . . . .. .. EEERE 165
7.4 Evolution temperature muscles of upperarm . . . . ... .. ... .. 166
7.5 Comparison of left/right pahﬁ ...................... 168
A.l1 Pain Hand Diagram . . . . . . .. .. ... ... ... ......... 207
xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



List of Acronyms

AAM
ACLS
ANN
ART
ATD
ATR
CT
CMpEm
CSS
C-svC
FCM
FFT
FPA
FLIR

GMLP

Active Appearance Model
Active Contour Level Set
Artificial Neural Network
Adaptive Resonance Theory
Automated Target Detection
Automated Target Recognition
Computed Tomography

Cued Morphological Processing of Edge Maps
Curvature Scale-Space
C-Support Vector Classification
Fuzzy C-Means

Fast Fourier Transform

Focal Plane Array

Forward Looking Infrared

Gaussian Multilayer Perceptron

Xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



GMM

GWR

IR

KLT

KNN

MLP

MRI

PCA

PNN

PRMD

RBF

ROI

ROIls

RSI

SNR

SOM

SVM

TRF

Gaussian Mixture Modelling
Grow When Required

Infrared

Karhunen-Loeve Transform
K-Nearest-Neighbour
Multilayer Perceptron
Magnetic Resonance Imaging
Principal Components Analysis
Probabilistic Neural Network
Playing-Related Milsculoskeletal Disorder
Radial Basis Function

Region of Interest

Regions of Interest

Repetitive Strain Injuries
Signal-to-Noise Ratio
Self-Organizing Map

Support Vector Machine

Thermoregulatory Frequencies

xvi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UClI University of California Irvine

USPS  United States Postal Se-rvice

xvii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1

Introduction

1.1 Motivation

Thermal Infrared (IR) imaging has been used extensively in a wide range of appli-
cations, ranging from military to non-destructive testing or veterinary applications.
It has also been used as a clinical imaging modality in the 1960’s-1980’s. Several
clinical applications were investigated: pain assessment, breast cancer and rheuma-
toid arthritis, among others. Promising results were reported in the early literature
[1-3]. Other studies pointed out some limitations of the technique for clinical pur-
poses [4] [5]. Indeed, a number of issues were identified early on that prevented the
widespread use of thermal IR imaging for medical applications until recently: Poor
understanding of the limitations of the modality, technological limitations of early
systems (size and weight, cooling requirements), subjectivity of the interpretation
of thermograms, lack of sensitivity and the cost of IR systems. However, advances
in IR imaging technology and standardized protocols have led to a renewed interest

in the technique for medical applications. Standards for thermographic examination
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CHAPTER 1. INTRODUCTION 2

protocols are now agreed upon [6] [7]. New IR systems have higher thermal and
spatial resolutions and faster frame and processing rates. As a result the quality of
the digital IR images produced is usually very good.

On the other hand, the issue of interpreting the resulting IR images remains.
The interpretation of thermograms is still mostly done “visually” by a clinical expert
trained in the interpretation of thermograms. It is assumed that the information
contained in the image presented to the clinical expert is an unbiased and full rep-
resentation of the actual information obtained from the patient. Unfortunately, this
is not always the case. The interpretation of thermograms relies on being able to
differentiate subtle temperature variations and on recognizing typical patterns asso-
ciated with a particular pathology or a physiological problem. The ability of the eye
to detect those changes in a grey-level image, where each grey level corresponds to
a temperature or a range of temperatures, is not very good. Using pseudo-colours is
not a good alternative due to the psychological effect of warm and cold colours [8]. A
quantitative assessment of thermograms is a good way to circumvent the subjectivity
of the current method of assessment. Currently, quantitative assessment consists of
manual identification of potential regions of interest, detection of hot/cold spots, sim-
ple asymmetry analysis with first-order statistics and subtraction of images within
a sequence (see for example [9]). Few automated computer-aided analysis and pro-
cessing systems for clinical thermal IR images have been proposed to date. A general
strategy for addressing the specificities of clinical IR imaging has not been proposed
either. In addition, some of the key building blocks of an automated anomaly detec-

tion architecture for clinical IR imaging are still missing.
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CHAPTER 1. INTRODUCTION 3

1.2 Thesis Objectives and Definition of the
Problem

This thesis proposes a general framework for automated detection of anomalies
in clinical infrared images. Within that framework, it addresses two fundamental
problems: the segmentation of a main object from the background; and the extraction
of relevant, potentially abnormal, Region of Interests (ROIs).

Thermal IR imaging indirectly collects the surface temperature distribution of an
object. As such, it is dependent not only on object temperature, but also on its
surface properties, surface orientation, on the wavelength used and overall on the en-
vironmental conditions that could affect the collecting of IR radiation. This typically
leads to a narrow range of intensities and sometimes strong overlapping of temper-
ature distribution between the object and its background. In addition, thermal IR
imaging tends to produce smooth image regions and no colour information is avail-
able, which limits or prohibits the use of segmentation techniques based on texture
or colour. Segmenting even simple regions within an IR image can be challenging,
as for example in the case of the segmentation of cold extremities (hands and feet).
Segmentation techniques developed for other imaging modalities or other IR applica-
tions typically do not work well when applied to IR images of the human body. Few
automated segmentation approaches have been proposed that work consistently well
with this modality. For a proper assessment of anomalies in IR images of the human
body, a robust segmentation approach is necessary.

The identification of potentially abnormal regions of interest in IR images of the

human body can be attempted blindly, if no prior information is available about the
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CHAPTER 1. INTRODUCTION 4

problem at hand. However, a more focused search can be performed if a specific clin-
ical context is known, by looking for specific anatomical structures or physiologically
activer areas. As mentioned previously, IR thermal images tend to be smooth and lack
overall texture and colour information. Temperature variations within an object or a
body region are usually not indicative of structural regions such as bones in X-rays or
white matter in a brain Magnetic Resonance Imaging (MRI). As a result, extracting
anatomical information is difficult. This thesis proposes a novel approach to extract
anatomical regions based on the detection of anatomical landmarks.

In order to achieve these objectives, the following work will be presented. First, a
novel algorithm that uses a priori knowledge to constrain a morphological processing
of edge maps is introduced. A second novel segmentation approach using a Multilayer
Perceptron (MLP) and a Support Vector Machine (SVM) to classify edge components
is proposed, that is able to recover contours of body regions for a variety of situa-
tions. When trained on a specific database, this second algorithm will be shown to
generalize well to other similar body regions. Finally, several fusion techniques are
investigated in order to improve the segmentation results. In particular, a new fusion
method is introduced where the agreement between segmentation techniques is used
to constrain morphological post-processing operations. This new fusion approach is
a global approach as opposed to the pixel-based decision approach of voting scheme
or Bayesian based fusion.

The extraction of potential abnormal ROIs is separated in two parallel operations.
If expert knowledge is available that allows to focus the search for abnormal regions
to specific anatomical locations, then these anatomical locations can be retrieved

through the localization of key landmark points. The most robust landmark points
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CHAPTER 1. INTRODUCTION 4}

in IR images are located on the contour of body regions and typically correspond
to anthropometric landmarks. A novel algorithm to detect these landmark points is
implemented and tested. It uses a three stage approach based on curvature analysis
of contour, curvature analysis of the average curve between contours for symmetrical
regions and region-specific constraints on the location of the landmarks. A clustering
procedure allows one to sort through the most relevant landmark points. If expert
knowledge is not available, then a blind search for potentially abnormal regions is
performed. This is achieved through the fusion of clusters from a thresholded fea-
ture map and from an Adaptive Resonance Theory (ART) network. Finally, some

applications of the architecture presented in this thesis are given.
1.3 Thesis Outline

The thesis is organized as follows. Chapter 2 presents background theory on
IR imaging and IR image processing. In particular, Section 2.1 outlines briefly the
physics of IR imaging. Section 2.2 describes the state of the art in the processing
of IR images, including preprocessing, segmentation in Section 2.2.2, landmark iden-
tification in Section 2.2.3 and feature extraction in Section 2.2.5. The last part of
chapter 2 reviews the state-of-the-art in the detection of anomalous regions in IR and
optical images.

Chapter 3 presents the methodology used in this work. In particular, Section 3.1
shows an overview of the proposed framework. Section 3.3 details the segmentation
strategy introduced including the cued morphological processing of edge maps ap-
proach and the various fusion strategies investigated. Sections 3.4 and 3.5 present the

proposed algorithms for locating anatomical landmark points and extracting anatom-
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CHAPTER 1. INTRODUCTION 6

ical regions of interest.

Chapter 4 gives an overview of the various databases of IR images that were
acquired and used for testing. Chapter 5 presents the segmentation results for the
various techniques introduced. Each algorithm was first tested on synthetic images
(Section 5.1.2) and real IR images of extremities (Section 5.1.3). Breast segmen-
tation results are covered in Section 5.2. In Chapter 6 the anatomical landmark
identification results are presented. Chapter 7 introduces some of the applications of
the proposed architecture. Finally Chapter 8 summarizes the contributions of this

thesis and highlights potential future work.
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Chapter 2

Background Review

2.1 Infrared Imaging

All objects heated at temperatures above absolute zero (zero degree Kelvin (°K)
or -273 degrees Celsius (°C)) emit electromagnetic radiation [10-12]. The emissive
power of the surface of an object is the total energy transferred from the object to
its surroundings. It is proportional to the emissive power Ej of a blackbody, defined
as an ideal body that absorbs all incident radiation and radiates in a continuous

spectrum according to Planck’s law (in vacuum):

2mhc?

B = e~ D

(2.1)

where Ey(A, T) is the emissive power of a blackbody in watts per steradian per square
metre per micron for a particular wavelength A (m) and temperature T' ( °K), h is
Planck’s constant (6.626 - 10%*Js), c is the velocity of light (ms~') and k is the

Boltzmann’s constant (1.380 - 103 JK~1).
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CHAPTER 2. BACKGROUND REVIEW 8

The integration of Planck’s law over all wavelengths yields the total emissive power
Ey(T) (Watt/m?) of a blackbody [12], which is referred to as Stefan-Boltzmann’s law
and is given by:

Ey(T) = oT* (2.2)

where ¢ = % ~ 5.670 - 108Wm?2K* is the Stefan-Boltzmann’s constant.

The emissivity of an object is defined as the ratio of the emissive power E,(\, T
from that object to the emissive power Ey(\,T') from a blackbody at the same tem-

perature and wavelength [12]:

(2.3)

The emissivity of an object is not constant and depends on temperature, wave-
length and direction. However, it may be considered as a constant within a certain
bandwidth, range of temperature and cone of direction, which simplifies greatly the
determination of the emissive power or other related quantities [10-12].

The amount of energy reflected by an object is determined by the reflectivity

coefficient p,, which is given by the simple relationship [12]:

Pr = 1-— € (24)

where €, is the total emissivity. The reflectivity of a blackbody is null.
If a gradient of temperature is applied to a blackbody and if only radiative heat

transfer is considered, the Stefan-Boltzmann’s law becomes:

By =o(T} - T) (2.5)
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CHAPTER 2. BACKGROUND REVIEW 9

where Tj, is the temperature of the body and T} is the temperature of the surroundings.

It is also interesting to notice that the emissive power reaches a maximum at
a wavelength \,,, given by Wien’s law (found by differentiating Planck’s law (Eq.
(2.1)) according to A) [12]:

AmazT = 0.002898m °K (2.6)

where Apq, is the wavelength (in metres) of the maximum emissive power at temper-

‘ature T' (in °K). As a result, at typical room temperature (300°K) the maximum
emissive power is reached for a wavelength of 9.7um, which is in the far infrared part
of the spectrum.

Equations (2.1) and (2.3) provide a direct link between the measured radiative
energy of a body with the temperature of that body for a specific wavelength. Thus,
the accuracy of the measurement of the temperature of an object or a body depends
on the ability to measure the radiative energy correctly. If an object has an emissivity
less than unity, the total energy radiated from that body will be the sum of the energy
emitted by the body itself, and the energy that is reflected by that body and comes
from the surroundings or other bodies present at the time of the measurement. In
such a case, the relationship between measured radiative energy and temperature has
to be adjusted to take into account the reflectivity. It is therefore desirable to have an
emissivity as close to unity as possible in order to have a high accuracy of temperature
measurement [13]. The correction needed to account for the reflectivity of the skin is
generally relatively small, especially if the environment has a temperature somewhat
lower than that of skin and if the angle of viewing of the measurement is less than

/4, which is usually the case in clinical settings [13] [14].
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The human body is typically at temperatures ranging from 300 °K to 315°K and
therefore emits energy in the form of electromagnetic waves. A major part of the
energy radiated by the human body goes through the skin and occurs in the infrared
part of the electromagnetic spectrum [15]. In particular, it has been found that the
emissive power radiated by the skin reaches a peak around 9.5um and it is very sig-
nificant in the ranges 3 — 5um and 8 — 14um compared to the rest of the spectrum,
although it should be noted that the average radiative power levels of the skin are low
with respect to typical radiative power values in the visible range of the electromag-
netic spectrum [13]. An interesting characteristic of human skin is its high emissivity
in the 8 — 14um range, typically 0.97 to 0.98, which makes skin temperature mea-
surements in that range particularly accurate. The emissivity of skin in the 3 — 5um
range is somewhat lower than that in the 8 — 14um range and the former is also more
prone to environmental artifacts according to [13]. As a result, measurements of skin
temperature should be carried out in the 8 — 14um region in order to obtain better

accuracy and more reliable results.

2.1.1 Clinical Infrared Thermography

Clinical infrared thermography or infrared thermal imaging is defined as the recording
of the temperature distribution of the human body (or body areas) using infrared
radiation emitted by the surface of that body, i.e., the skin [14]. In other words,
medical thermography involves a collection of images of the temperature distribution
of the surface of the body. Thermography can therefore provide valuable information
on the physiology of the human body. It is important to keep in mind that medical

thermography is a functional test and therefore cannot be expected to provide a direct
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diagnosis of anatomical or structural pathologies. Thermography can however suggest
location and/or cause of dysfunctions of an anatomical or neurological nature [8].
The skin temperature distribution of a healthy human body exhibits a contralateral
symmetry. Temperature distribution that shows asymmetrical patterns is usually a
strong indicator of abnormality [16], but the converse is not always true since some
pathological conditions may exhibit bilateral thermal dysfunction and in such cases
other signs of abnormalities in the temperature distribution have to be found [17].

Medical infrared imaging must follow strict protocols and standards in order to
achieve accurate measurements [6] [14]. In particular, the control of the environment
(temperature, humidity, and reflectivity) and of the thermal characteristics of the
skin is critical.

Advocates of medical thermography often put forward that it is non-invasive, low
cost (after the initial purchase cost) and that it has a wide range of applications in
neurology, vascular disorders, rheumatic diseases, oncology, neonatology or ophthal-
mology, among others. However, the sensitivity and the specificity of the technique
vary greatly depending on the applications considered!. One explanation for the
variation in performance of thermographic examination as a diagnostic aid might be
the difficulty to interpret thermograms (i.e. thermographic or thermal images), due
to the complexity of the phenomena involved and to the necessity of understanding
all the underlying processes that lead to changes in the thermal distribution of the
human body [8]. |

A main part of the earlier literature on medical thermography focuses on qual-

itative interpretation of thermograms. It involves the determination of abnormal

1The sensitivity can be defined as sens. = Tﬁ;%; the specificity as: spec. = T—Aﬁ—vﬁ; where TN,
TP, FN and FP stand for true negative, true positive, false negative and false positive respectively
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thermal variations of the skin‘by means of a visual assessment of pseudo-coloured
or grey-level thermograms with the help of isothermal displays, visual localization of
hot or cold spots and visual detection of asymmetries [2,17-24]. The use of pseudo-
colours for mapping the temperatures of a thermogram has been criticized for its
subjectivity due to the psychological effect of certain colours, which may skew the
observer’s performance [8].

In order to improve the assessment of thermograms it is important to quantify
thermographic findings. Normal values of asymmetries were investigated by Goodman
et al., Uematsu et al. and more recently by Herry et al. [16,25-27]. They found that
temperature differences between contralateral sides were very small in normal subjects
and that the thermal symmetry was stable across regions of the body.

Extraction of the ROIs is typically done manually or in a semi-automated manner.
Anbar identified two methods of extracting ROIs from a thermal image [8]. The first
method implied the delimitation of a ROI on one side of the body by an operator and
the corresponding contralateral ROI was obtained by basic reflection across a vertical
line of symmetry. The second method was similar to that used by Goodman et al.
in [16] and consisted of a grid of squares or rectangles superposed to the thermal
image. Lipari and Head manually selected breast contours as ROIs and decomposed
each breast into four smaller ROIs using anatomical reference points provided by the
user [28] [29]. Several authors also suggested stretching and mapping techniques ap-
plied to ROIs to allow a more efficient comparison between different ROIs in dynamic
thermography, especially when ROIs are not simple geometric shapes [30-33]. More
complex methods of boundary or edge detection were implemented for breast seg-

mentation by Qi, Ng and Scales using Hough transforms [34-36]. They are reviewed
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in more detail in Section 2.2.2.

A statistical analysis is typically carried out on the ROIs. This includes hot/cold
spot detection and first-order statistics. Another useful statistical tool is the his-
togram that represents the temperature distribution over a discrete range of values.
Some authors varied the size of ROIs to further investigate the effect of scaling on
temperature asymmetries and improve the statistical accuracy of temperature differ-
ences [16] [29]. Mabuchi et al. proposed an image processing program to evaluate and
display the temperature difference distribution between one healthy side of the body
and the contralateral healthy side [37]. Temperature differences were computed on a
pixel-by-pixel basis inside trapezoids of various sizes that divided symmetrically the
human body. The authors noted that their method works only for pathologies that do
not affect both sides of the body. Also, the ROIs were pre-selected manually by the
user. Vavilov et al. [38] studied the left-right thermal asymmetry of breasts, thorax
and ankles of subjects previously classified as “practically healthy”. They computed
the signal-to-noise ratio, the Z-statistics and the Kolmogorov-Smirnov statistics of
contralateral small rectangular regions of interest chosen manually by an operator to
quantify thermal asymmetries. Their results suggest that it is possible to distinguish
between normal and pathological thermal distributions with an appropriate choice of
threshold for each of the statistical parameters, although they underlined the need for
test procedures that are more specific to the area investigated. Koay et al. [39] pro-
posed a method to assess the temperature asymmetry between left and right breast
using an Artificial Neural Network (ANN). Statistical parameters were extracted
from the whole breast and from a quadrant division of each breast. However, only

two of them (mean and standard deviation) were used reliably due to the small sample
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size. The authors showed that a simple perceptron was able to differentiate between
normal and abnormal breast. Other quantitative measures of abnormalities include
Collins’ thermal index, based on isothermal temperature differences [1], and profile
analysis [31]. Both of these methods require user intervention.

Sequences of thermal images can be analyzed with a Fast Fourier Transform (FFT)
applied to time profiles [40]. Montoro and Anbar argued that frequencies of temper-
ature oscillations are characteristic and that static thermography cannot diagnose
reliably temperature asymmetries of less than 0.1°C because the variation of tem-
perature asymmetries over a short period of time can be of the order of that limit or
even higher. They identified Thermoregulatory Frequencies (TRF) across the back
ranging from 2 to 50 MHz but were unable to determine if all their frequencies were
fundamental physiological frequencies or artifacts created by reflected higher frequen-
cies. Anbar also mentioned several methods for an objective analysis of TRF, such
as cluster analysis, feature extraction algorithm, or autocorrelation analysis [13].

Another original method to analyze a sequence of thermograms is the use of the
Karhunen-Loeve Transform (KLT). In the case of sequential thermograms, it reduces
the temporal and spatial information contained in the sequence in a small number of
significant eigen-images, with specific weights to take into account the time dimen-
sion. Unser et al. [41] claimed that the analysis of the main eigenvalues enabled an
easier detection of abnormalities because all the relevant information was present with
reduced noise. Varga and DeMuynck [42] used a similar method to process sequential
thermograms but used a unique colour coding scheme on the first three resultant
eigen-images and summed the three resulting images to improve the discriminatory

value of the final image. Varga and Hanka [43] proposed a complex method of classifi-
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cation of the response to a cold stress test for normal and abnormal conditions of the
hands. The images were standardized and presented as a dual representation before
being processed by KLT in order to identify ROI for the feature extractor, which was
based on Kittler and Young transformation. A T7-Nearest-Neighbour classifier was

then used and the results were presented as a colour-coded image.

2.1.2 Applications and Specificities of Infrared Imaging

IR images differ significantly from visible images. The intensities of the former depend
on object temperature, object surface properties, surface orientation, wavelength, etc.
and are not necessarily uniform across an object, for which the temperature is uniform.
The environmental conditions at the time of imaging also have great influence on the
resulting images. In addition, the range of intensities of infrared images is typically
much less than that of visible images,r leading to low contrast, poor resolution, less
texture information, etc. [44] [45].

These effects may be somewhat attenuated when imaging conditions are controlled
(see imaging protocol for clinical applications in Appendix A) and when the object of
interest has a high emissivity. For example, IR imaging of the body under controlled
environmental conditions can produce higher quality images in terms of contrast,
Signal-to-Noise Ratio (SNR) and resolution than typical IR imaging, such as military
targets or predictive maintenance [46]. Yet, key features that are successfully used
in the processing of visible images cannot be used reliably when dealing with IR
images [45].

Military and remote sensing IR images usually exhibit a large amount of back-

ground clutter and their resolution varies widely depending on the range and the
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environmental conditions that cannot be controlled [46]. In contrast, images of the
human body have very good resolution and less background clutter, but the contrast
can still be problematic depending on the body regions considered. Also, clinical IR
thermal images have very little texture. Another major difference between medical
IR images and other IR images is the nature of the target of interest. For example, in
military IR imaging applications, such as Automated Target Recognition (ATR), the
target is mostly rigid (e.g. tanks or airplanes) and the target shape is usually known,
although the target presence might not be. A model can be developed to increase
the accuracy of ATR systems in challenging conditions. On the other hand, medical
targets, such as tumours, change shape easily. The size, shape and orientation of
the target can vary over time and modelling of the biological processes causing the

changes is very challenging [46].

2.2 Infrared Image Processing

The following subsections describe the state-of-the-art in IR image processing.
The review is extended somewhat outside of the range of clinical IR image processing
since the literature on the topic is scarce, and some of the methods proposed in the

broad IR image processing literature are of interest.

2.2.1 Preprocessing
The pre-processing of IR images is not intrinsically different from that of visible
images. It involves correcting for possible artifacts created by the imaging system,

including the removal of any noise. The choice of a noise removal method is linked to

the type of imaging system used, its quality and the type of noise created. The noise
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in modern IR systems is usually well characterized by a Gaussian distribution, but is
not always additive. IR imaging systems based on photodetectors are better modelled
by Poisson noise and appropriate noise removal procedures must be considered (for
example using a squared wavelet transform as in [27]). In general, for the applications
that are considered in this thesis (i.e. IR images of the human body in closed and
controlled environment), the SNR is relatively high and noise removal is not a major
issue. However, clinical images acquired with older technology have sometimes a

much lower SNR as shown in Fig. 2.1.

(a) Original image (b) Denoised image

Figure 2.1: Example of the processing of a noisy thermal IR image of the upper-back,
using a modified version of the Discrete Wavelet Squared transform method.

Figure 2.1 shows an example of processing of a noisy thermal infrared image of
the upper-back. This image was taken using a first generation infrared camera with
a photovoltaic sensor by M. Frize and her team from the pain clinic and the Moncton
Hospital, NB. The noise is modelled as Poisson noise. The denoising method was a

modified version of the Discrete Wavelet Squared Transform method [27] [47].
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2.2.2 Segmentation

Of greater importance however is the removal of unwanted background in the images.
This is the first stage of the segmentation process and is meant to isolate the regions
of interest on the body. Note that for most of the applications considered in this
thesis, the background is not considered complex. However, due to the nature of IR
images, the extraction of the main ROI from the background can be challenging as
the intensities from the background region(s) may be strongly overlapping with that
of the region to be extracted. In other words, the body area considered might have
a wide range of temperatures, which overlaps with the background range. Since the
images produced are directly related to the temperature of the objects in the field of
view of the camera?, parts of the area of interest might be blended in the background,
similar to a local variation of illumination in optical images. As a result, segmenta-
tion techniques relying only on the intensity levelé (thresholding, standard clustering
algorithms) do not perform well in general. Furthermore, methods developed for au-
tomated tracking of military targets [48], or for predictive maintenance [49] do not
perform well when translated to other applications such as infrared imaging of the
human body.

Combination of common segmentation techniques has been proposed in the IR
imaging literature to overcome this issue. For instance, Wu et al. used a modified
version of the standard Fuzzy C-Means (FCM) algorithm taking into account the
membership values in a small neighbourhood of each pixel when updating the mem-

bership matrix [50]. They show good results on ship detection in Forward Looking

2This is a simplified explanation as the intensity level in the infrared images and therefore the
temperature returned also depends on various physical properties of the object, such as its surface
properties, its emissivity, etc.
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Infrared (FLIR) images.

Ernisse et al. presented a segmentation method based on a hit-and-miss filter [51].
They thresholded the filtered image, making it binary, and added a locally thresholded
version of the original image to produce a final binary image expected to show the
location of the targets in the original FLIR image. The thresholds were optimized
using a genetic algorithm. They added a derivative of Gaussian filter as an extra step
to incorporate some of the shape information from the original image into the final
segmented image, showing the potential location of targets. However, knowledge
about the target was assumed to be extensive in designing the hit-and-miss filter,
which limits the applicability of the method for other applications.

Zhou et al. investigated the use of level-set methods to extract boundary on
thermal IR images [52]. An initial contour is grown adaptively using a speed function
based on the edge/direction map. They show some applications of their techniques on
different examples of thermal IR images, including medical IR images. However, they
do not compare their results with those from other segmentation techniques, which
may have worked just as well in the examples presented in their paper. They also
mention that level-set methods may be susceptible to gaps in the expected contour of
the object of interest, in which case the final contour might have “leaked” through the
gaps. The technique is nevertheless interesting and promising for the segmentation
of IR images.

Qi et al. [35] presented an automated asymmetry analysis of breast thermograms.
Their approach used a Canny edge detector and a Hough transform to detect global
edges of the image and breast boundaries. Then they compared the curvature of

smoothed versions of the histograms of the two segmented breasts in order to deter-
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mine the degree of asymmetry of the temperature distribution of the breasts. Ng et
al. presented a method of extracting breast shapes from breast thermograms [36].
Gradients of thermograms were computed using the Robert cross-gradient operator
in order to detect edges and boundaries. Gradient images were enhanced by contrast
stretching and median filtering and then divided into 25 regions before being submit-
ted to a thresholding rule. Both these papers, however, provide few implementation
details and do not present extensive results. Scales et al. proposed a method that
used a series of Canny edge detectors to detect the bottom contour of breasts by
linking connected edge components and looking for the longest component that was
not part of the outer body contour [34]. The top and side contours were estimated
based on a set of empirical rules and the location of the armpit landmark points.
They reported qualitative results for a small sample of IR breast images. Poor seg-
mentation was usually attributed to the failure of the edge detection step. Blank
and Kargel introduced a dual thresholding method to segment infrared images of the
hand [53]. The thresholds were derived from user-selected rectangular regions. Back-
grounds were kept uniform and noise-free. Morphological opening was used to isolate
palmar regions from fingers, using two automatically chosen structural elements.
Finally, Chan and Pearce applied image processing techniques to enhance the
visualization of subcutaneous vessels in thermograms after a stress test [54]. They
compared the results for two different methods. The first method used a 9 x 9 median
filter followed by a Frei-Chen edge detector and thresholding. The second method
filtered the images with a rule-based adaptive window-size filter. A 9 X 9 median
filtered version of the resulting images was subtracted from it and a root image

derived by successive median filtering. The vascular patterns were then extracted by
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thresholding.

Morphological processing has been used extensively in the segmentation litera-
ture, including in production inspection and other automated measurement systems.
However, most methods proposed in the literature rely on texture information that is
not present in infrared images. For instance, Lee and Wong introduced an approach
based on skeleton operations, thresholding and morphological opening to segment
synthetic visible images [55]. Daut and Zhao proposed a similar method to detect
flaws in glass [56]. More recently, Mak et al. discussed the optimal design of mor-
phological filter for fabric defect detection, based on a semi-supervised morphological
processing of texture features extracted from visible images of textile [57]. An inter-
esting approach was proposed by Scotti et al. for extracting blood cells on microscopic
images [58]. Their approach used a Canny edge detector to extract the simple circu-
lar contour of the blood cells. Then morphological dilation, flood filling and erosion
operations were performed to classify the red blood cells from other cells, based on

the area of the objects.

2.2.3 Extraction of Anatomical Regions of Interest

The segmentation of the body region of interest is a first step that is crucial in focusing
the subsequent processing on relevant areas. Once the éegmented area of interest
has been performed, two options are available for carrying out the thermal imaging
analysis. The first one is to search for abnormal thermal patterns over the entire
segmented region; the second one is to refine the segmentation further by identifying
anatomically relevant regions and carry the analysis on these regions only. The first

option is treated in the next section. The second option is explored in this section.
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Note that the two options are not mutually exclusive and it is likely that they would
complement each other.

The identification of relevant anatomical structures, as defined by a clinical ex-
pert or as warranted by the application, can be performed manually although this is
impractical and time consuming for large databases. It can also be automated by lo-
calizing salient points or areas and reconstructing the structures of interest from there.
The use of remarkable points to define anatomical structures is well documented in
the medical field and in anthropometric studies (see [59] or [60] for example). Most
anthropometric landmarks are linked to skeletal features, which are typically best
found by palpation. These bony landmarks correlate with surface geometrical fea-
tures albeit in a subtle way. A typical clinical examination by a family practitioner,
for example, would likely involve locating bony landmarks or other surface markings
in order to find a specific medical structure. An interesting and useful aspect of
anatomical surface landmark points is that they are a stable set of points on every
human body [61].

Previously proposed methods for locating landmarks in 2D images include meth-
ods relying on the detection of high curvature points and corners, methods relying
on local energy models and methods relying on probabilistic models of the image and
shape. Curvature based methods are popular to find important surface geometrical
features indicative of bony landmarks, since information on the shape of a curve is
mostly concentrated at points of highest curvature. For instance, Le Briquer et al.
used the extrema of a modified curvature function proposed as a corner detector by
Kitchen and Rosenfeld to detect salient points in brain MRI [62] [63]. The modi-

fied curvature is essentially a weighed curvature function using the magnitude of the
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gradient of the intensity as weights. Curvature-based methods are related to corner
detection techniques and the latter can be applied to locating anatomical landmarks
as well. Robust corner detection algorithms include methods based on finding the
peaks of local autocorrelation functions (estimated for a local neighbourhood around
each pixel) as proposed by Moravec [64]. Improved variants based on different mea-
sures of “cornerness” using first and higher order differential operators have been
proposed by Harris [65] and by Forstner [66]. Corner detection methods relying on
differential operators tend to be sensitive to noise. In addition, they require the care-
ful setting of a threshold on the “cornerness” measure to remove false corners (small
extrema from the differential operation) and this can be difficult for a wide range of
images depending on illumination conditions and contrast.

Local energy models for finding corners and edges postulate that important fea-
tures in an image occur at a point where local frequency information is maximally
in phase (the phase is then said to be congruent at that point) [67]. The phase con-
gruency measure can be viewed as a function of the deviation of the phase from its
mean. Local frequency information is obtained through Fourier transform coefficients
or more frequently Gabor wavelets tuned to different spatial frequencies. An example
of a corner and edge detector using phase congruency was proposed by Kovesi [67].
The author points out that the setting of thresholds is more readily done than with
other corner detection methods through the statistics of the filter responses to the
image [67].

Another interesting technique for finding high-curvature points is the scale-space
curvature approach introduced by Mokhtarian and Mackworth [68], which calculates

curvature zero-crossings of curves at multiple scales. They first extract the contours
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using an edge detector and calculate the curvature at high scale. Corners are detected
at maxima of the curvature and they are then tracked at lower scale to improve their
localization. An example of a recent implementation is given in [69].

Another notable corner detector is the SUSAN (Smallest Univalue Segment Assim-
ilating Nucleus) detector proposed by Smith and Brady [70]. It is based on brightness
comparisons within a circular mask assuming that within a relatively small circular
region, pixels belonging to a given object will have relatively uniform brightness. It is
robust to noise and relatively fast but its repeatability is not as good as other popular
corner detectors such as the Harris one.

Finally, probabilistic models can be found in [71], where the authors introduced
a local image structure feature extractor at a range of scales and trained a statistical
model for each feature in order to extract salient points. Active appearance models
have also been used for matching a statistical appearance model of a shape to an
image, after training the model from a set of shapes sampled with manually selected
landmark points [72]. Active Appearance Model (AAM) is a powerful framework
but seems better suited for full segmentation and tracking of objects rather than
anatomical landmark extraction.

The goal of landmark identification is typically to recognize and/or segment the
shape of an object (white matter from brain MRI for example) and/or to use the
landmarks found for registering and warping the object in order to compare it with
the same object in a different scenario. For example, finding the landmark points in
a brain MRI allows the segmentation, registration and comparison of white and grey
matter, possibly enabling full 3D reconstruction. It may also be used in a scenario

where images from an MRI, Computed Tomography (CT) and other modalities are
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fused together in a concise representation df the region of interest, often yielding ad-
ditional information that would not have been easily extracted otherwise. In the case
of clinical thermal IR imaging, it is especially useful when comparing contralateral
sides of the body and assessing asymmetries, which as it has been mentioned already
is an important aspect in the search for abnormal thermal patterns. Being able to
match one region from the left side of the body to its equivalent on the right side of
the body is extremely useful.

In spite of similarities, the problem is slightly different in the case of IR images
since there is usually no specific visible anatomical structure inside the body region of
interest. Rather, the anatomical regions have to be drawn out from landmark points
located on the outside contour of the body region. In other words, the landmark
detection cannot be performed on the actual contour of the anatomical ROI, e.g.
white matter of the brain or a phalanx, since this contour is inexistent in most if not
all cases.

One solution to this problem is to place thermally neutral reflective markers on the
body, which act as fiducial markers and help locate key anatomical landmarks. This
is usually a challenging and time-consuming task, is not always accurate, and can
be uncomfortable for the subject. Having an expert locating landmarks on images
is equally challenging and time consuming [73]. Another option is to fuse images
of the subject from different imaging modalities, such as visible imaging or x-ray
radiography. Acquiring an image of the same subject with a conventional camera
simultaneously may reveal additional superficial details not visible on the IR image
such as the creases of the hand, well defined contours, colour contrast and so on.

An x-ray radiograph would further reveal bony details which can simplify greatly the
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localization of anatomical landmarks [74]. Unfortunately, taking multiple x-rays is
not practical for obvious reasons and the task of detecting landmarks on fused visible
and infrared images is not trivial; this is in fact similar to our problem. A third option
is to detect the landmarks automatically and use the found anatomical markers to

reconstruct the regions of interest, by using anatomical templates for example.

2.2.4 Extraction of Other Regions of Interest

Further segmentation of the body region is difficult as there is little information
about the anomalies, such as their shape, extent, etc. Most methods presented in the
literature rely on knowledge about the target in order to find the ROIs. However,
in the absence of information about the characteristics of anomalous regions, those
methods are not directly applicable. On the other hand, some automated methods
that do not use extensive prior information have been presented in the IR imaging
literature, and more specifically the Automated Target Detection (ATD) problem in
FLIR military images. For instance, Khan and Alam used some morphological pre-
processing operations on FLIR images and obtained potential regions of interest using
maxima of the resulting image [75]. Some a prior:i information about the target size
was used in both the pre-processing step and in the subsequent thresholding.
Casasent et al. claimed that no one detection technique could provide the high
detection rate, low false positives needed for ATD on FLIR military images and
therefore introduced a method based on the fusion of several detection techniques [76].
They used a nonlinear combination of morphological closing/opening functions and
edge detection based on wavelet filtering (using Gabor filters) to produce a final image

where potential targets have higher intensities. The high intensity regions are then
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sorted by successively lowering a threshold and removing an ellipse of pre-specified
size (based on the known target size) to avoid large regions at lower thresholds.
Threshold parameters were determined empirically and a priori information about
the target was necessary in the intensity peak sorting algorithm. The method was
applied successfully to the detection of tanks in FLIR images.

A more comprehensive system was proposed by Greenberg et al. [77]. They lo-
cated the centres of potential ROIs by thresholding a feature image obtained by
locally filtering a FLIR image with a standard deviation filter [77]. The threshold-
ing was based on a complexity measure applied to the standard-deviation map. The
centre candidates were then pruned using a graph-based approach on the local neigh-
bourhood in the standard-deviation map. Close centres were then aggregated with a
simple hierarchical clustering approach. Finally, the actual clusters were found from
the centres using local thresholding. The method was tested on satellite IR images
and produced good results when attempting to detect targets. Some parameters used
in their paper, however, required a rough estimation of the number and size of the
targets. Also, no extensive testing of the final step of their method (segmentation of
the actual targets) was reported, which would be important for medical applications.

Privitera and Stark presented an interesting approach to compare the performance
of different algorithms aimed at detecting regions of interest in visible images [78].
The algorithms consisted of 6 different filters producing 6 distinct types of feature
images (symmetry transform, difference in grey-level orientation, edges per unit area,
centre-surround receptive fields, entropy and contrast). Local maxima from each
filtered image were then clustered to form small ROIs, where the number of clusters

was chosen to be 9. The authors compared similarities between the ROIs produced
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by the various algorithms. The goal of the paper being to ultimately model the eye-
fixation movements when looking at images, the authors stopped short of actually
combining the different feature images to evaluate the performance of a fusion of

multiple feature images.

2.2.5 Choice of Features

The choice of the features in a classification paradigm is critical for obvious reasons.
One can distinguish several categories of features based on what the features are
trying to represent. The first and most commonly used are statistical features based
on first- or higher-order statistics extracted from the histogram of an image or its 2D
equivalent, the co-occurrence matrix. Most papers on thermal imaging of the human
body use simple first-order statistical features for discriminating between normal and
abnormal patterns. These statistical features typically consist of mean (or median),
maximum, minimum, standard deviation or variance, and to a lesser extent skewness
and kurtosis, over the entire image or over a selected region of interest, or as a
difference between two symmetrical regions. The reason behind the choice of features
for a given application is usually not clear and little work has been done on comparing
the discriminating power of the chosen features for a given application.

Researchers working on target detection and recognition in IR images prefer local
first-order statistical features, which are statistics computed locally over some neigh-
bourhood of a pixel. The result may be presented as a feature map of the same size
as the original image but containing the local statistics for each pixel over a specific
neighbourhood. For instance, Greenberg et al. used the standard deviation feature

map over a 5 X 5 neighbourhood to extract targets in military applications [77]. We-
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ber on the other hand used 5 local features (maximum, contrast, average gradient,
local variation) over rectangles of various sizes centred on each pixel [79]. All features
were then combined in one index for each pixel yielding what the author calls a con-
fidence map, which is then thresholded to provide the potential targets. In addition
to first order statistics, several other potential features have been considered in the
IR imaging literature. For instance, the entropy is often used to capture some of the
textural information of thermal images [77]. Fractals and fractal dimension were also
investigated [80] [81].

The second class of features is concerned with characterizing the shape of particu-
lar regions. This includes various properties of the region of interest such as distance
from centroid to boundary, perimeter, area, eccentricity, orientation, bounding box or
polygon, etc. [82—-84]. This is especially useful if some shape information is available
for the application considered. Another popular way to characterize the shape of a
region is by using moment invariants such as geometric, Zernike, Tchebichef or Leg-
endre moments. Most moments are (made) invariant to translation, rotation, scaling
and/or contrast [85] [86]. Moment invariants, or a combination of these, can present
in a concise manner the discriminative information about an image. Zhu et al. con-
sidered well-known moment invariants of thermal medical images, arguing that they
characterize images fairly well. They used the first seven moments [86].

The third class of features consists of multiscale representations (such as wavelet
or Gabor extensions). Multiscale representations have also been proposed either to
differentiate between target from background objects in automated target detection
and/or recognition in IR images [75]. Multiscale representations can capture localized

changes at multiple scales and spatial frequency. Khan and Alam used Daubechies
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wavelet features to classify objects as target or background in cluttered FLIR im-

agery [75]. Morphological operations were used to detect potential targets.

2.2.6 Summary of Infrared Image Processing

"The previous sections have covered the state-of-the-art techniques used in the process-
ing of IR images. Segmentation techniques for IR imaging proposed in the literature
have several shortcomings. Some techniques such as FCM [50] or thresholding and
hit-and-miss operator [51] work well for finding the location of a specific shape and
recovering that approximate shape, but they typically fail to fully segment a shape.
This is necessary in clinical applications of IR imaging, where potential abnormal
regions may occur at any location within the body region being imaged. Level-set
active contour methods [52] showed promising results but are still unable to recover
full contours when edges are weak and contrast 1s poor. Other segmentation tech-
niques [53] require user-inputed data and are therefore not relevant for automated
analysis. Finally, methods relying solely on morphological processing were presented
that perform well for different imaging modality and on simple contours and back-
grounds, but they are not adapted to more complex contours and backgrounds. A
robust segmentation approach that recovers the full contour or objects in IR images
is still missing. »

Extraction of ROIs in clinical IR images is difficult due in part to the smooth
temperature variations, the lack of visible anatomical landmarks within a body region
or the lack of information about the potentially interesting regions. Extraction of
anatomical ROIs requires anatomical landmark points in general. Several methods of

extracting salient points have been reviewed in Section 2.2.3. They all tend to produce
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a large number of landmark points when the contours are very smooth. Also, finding
the right combination of parameters for each method is not always straightforward
and the optimal parameter value can vary widely from one image to another. An
algorithm for selecting only key anatomical landmark points is needed in order to
produce specific anatomical ROIs. For blind search of potentially abnormal ROIs
in IR images, several approaches were investigated in Section 2.2.4. Although they
identified key concepts such as fusion of several basic techniques and the combination
of feature maps, they either required knowledge about the target [77] [87] or they

focused on centroids of regions instead of full regions [78].

2.3 Anomaly Detection in Infrared Imaging

In the next few sections the state-of-the-art in anomaly detection is presented in
an IR imaging context. The literature abounds in papers on the different techniques
used for ATD, where a known target is sought after in challenging backgrounds, of-
ten changing over time. The automated target detection and recognition problem
is difficult in many respects, for instance when comparing a large number of target
signatures in real-time. However, the target detection in itself is greatly simpli-
fied by the assumption that extensive knowledge about the target available, through
large databases of target signatures for example, or knowledge of the shape of the
target [88]. Anomaly detection is usually the first stage in an automated target de-
tection and recognition system. It is also a critical one, in which regions containing
potential anomalies or unidentified areas are flagged for further analysis.

Another issue with anomaly detection is the availability of training data and labels.

Most approaches work by first modelling normal data and then, using some similarity,
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distance or other measure against the normal data, they determine whether or not the
new data should be deemed abnormal or normal. Having labelled training data allows
for good determination of the normal versus abnormal situations and should result in
better classification. On the other hand, when a set of unlabelled data is presented,
or when no training data is available, the normal class needs to be estimated reliably
in order to obtain good classification results.

Anomaly detection techniques can be found in a wide range of applications, from
computer network intrusion to fault detection in machines, and character recognition.
Many of the methods developed for non-imaging applications such as network intru-
sion detection are not readily applicable to imaging problems due to their reliance on
sequential and time series analysis for example. For completeness, the following sec-
tions cover the main techniques for anomaly detection in an optical and IR imaging

context.

2.3.1 Statistical Techniques

Statistical novelty detection techniques model data based on statistical properties and
then test a new sample to check whether or not it belongs to the estimated model.
Modelling data leads to estimating the probability density function of the underlying
phenomenon based on data samples. The accuracy of the estimate depends not only
on the number of samples available but also on the distribution of the data in the input
space. Low density regions of the input space may be difficult to model accurately,

which leads to large errors when setting thresholds between normal and abnormal

regions unless great care is taken.
Statistical methods are usually divided into parametric and non-parametric ap-

proaches. Parametric approaches assume that the data come from a family of known
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distributions, for example a Gaussian distribution, and attempt to best estimate the
parameters of the assumed distribution. In the ideal case of a known distribution
for the data and Bayes classifier, a threshold can be determined that optimizes the
trade-off between error rate (probability of erroneous classification) and reject rate
(probability of rejecting a sample pattern, i.e., the pattern does not belong to any of
the classes). However, it is rare in practical applications that the underlying distri-
bution is known and therefore the choice of a Gaussian distribution may lead to poor
results.
| Few parametric methods are used in pra,ctice for novelty of anomaly detection due
to the lack of flexibility of the model once a family of distributions has been chosen. If
little or no prior knowledge about the true density is available, there is a great chance
that the resulting probability density function estimate will be poor. On the other
hand, semi-parametric methods do not restrict themselves to specific functional forms
but still allow the size of the model to grow with the complexity of the problem and not
simply with the size of the data set [89]. Mixture modelling, and especially Gaussian
Mixture Modelling (GMM), is an example of semi-parametric techniques that has
been used successfully for various applications. The number of basis functions in the
mixture can be treated as a parameter of the model and estimated along with other
parameters of the distributions. This leads to models where the number of mixture
components is much less that the number of training samples, as opposed to some
non-parametric techniques such as Parzen window density estimation.

GMM approaches use Gaussian kernels to estimate probability density functions

of patterns in a training set. The number of kernels is less than the number of pat-

terns in the training set, but if the dimensionality of the data is large, a large number
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of samples will be required to train the model reliably [90]. GMM is an attractive
model since it has a universal approximation property in theory and is analytically
simple [91]. The main issue with GMM is setting the appropriate number of kernels
as well as the thresholds between classes. Roberts and Tarassenko [92] proposed a
method to select automatically the number of kernels using a growth criterion based
on the smallest Mahalanobis distance between training sample and each Gaussian
kernel. One solution to the thresholding problem for low-density input space regions
was addressed by Tarassenko in [93]. He used local novelty thresholds depending on
the density of the data in the region of the input space. The space is partitioned using
the k-means algorithm and an estimate of the probability density function for each
region was calculated using GMM. The algorithm was applied with some success to
mammograms. Roberts introduced the extreme value theory for novelty detection,
which statistically models abnormally low or high values in the tails of distributions.
The density estimation is performed by a GMM approach where the number of kernels
is determined automatically based on penalized likelihood methods [91] [94]. The au-
thors applied their technique to several biomedical datasets including a small number
of MRI images. Outliers can make the data density estimation erroneous and some
papers address these issues by incorporating an estimate of the probability density
function of outliers in the model [95].

Nonparametric methods can be used with arbitrary distributions and do not make
any assumption about the form of the underlying densities to estimate [96]. However,
they tend to be extremely slow to converge and require more data samples to get
accurate estimates of the underlying density. Common nonparametric techniques

include Parzen windows, k-nearest-neighbour and some fuzzy classifiers.
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2.3.2 Artificial Neural Network (ANNs) Techniques

ANNs have been used extensively for anomaly detection as they typically require less
parameters to be set and fewer a priori assumptions about the data are necessary [90].
Training can be done in a supervised or unsupervised manner depending on the

architecture considered and the availability of training data.

2.3.2.1 Multilayer Perceptrons

MLPs are the most widely used class of neural networks. They consist of an input and
an output layer of neurons and one or several layers of interconnected hidden units
that effectively create complex mappings between inputs and outputs. MLP rely on
hidden units which compute a non-linear function of the scalar product of the input
vector and a weight vector [89]. The outputs of an MLP network for a one-hidden

layer network may formally be computed as (using Bishop’s notations):

M d
- (z g (z wg;m)) 1)
=0 =0

where y;, are the outputs, g and § are activation functions, w(»? are the weights
between the input units and first layer of hidden units and between the first and
second layer of hidden units respectively, and z; are the input units. This formula
can be extended to a greater number of layers if needed. Training the network means
finding the weights that provide the best mapping between the input and actual
outputs.

Training of MLP is typically done in a supervised manner where target vectors

of known classes are presented to the network. Various error back propagation train-
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ing procedures exist to train aﬁ MLP network. MLP are powerful and flexible tools
for finding non-linear mappings between inputs and outputs. Hidden units act as
localized representations of the input space and the linear superposition of these lo-
calized functions have universal approximation capabilities. As a result, MLP are
able to represent complex problems, such as classification or regression. For novelty
detection, however, as Markou et al. mentioned in their review of novelty detec-
tion techniques, they do not generate closed-class boundaries [90]. In other words,
a standard MLP will separate two classes with a hyperplane as opposed to a Radial
Basis Function (RBF) network for instance, which attempts to fit a Gaussian function
around each class. This may be the cause of serious misclassification problems when
novel patterns are presented to the network since they will likely be classified as one
of the existing classes. Nevertheless, many papers have dealt with the application of
MLP to anomaly detection. For example, Bishop applied Gaussian mixture modelling
to estimate the density of the training data and then used the estimate to assess the
degree of novelty of an input when passed through the network, which in turn gives
an estimate of the validity of a network’s prediction [97]. Another simple approach
is to threshold the output of the network, assuming that low confidence translates
into novelty [98]. Multiple thresholds may also be used on the first few winning
nodes [99] [100]. Vasconcelos et al. suggested a solution to the problem of open class
boundaries generated by MLP networks [101]. The authors used the patterns rejected
by the network with high confidence as negative training patterns. This arguably re-
inforces the decision of the networks and worked better than randomly generating
negative training patterns. Vasconcelos et al. also considered Gaussian Multilayer

Perceptron (GMLP), where the sigmoid activation function, in part responsible for
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the open class boundary problem, is replaced by a modified Gaussian activation func-
tion [101]. GMLPs tend to create more confined regions around the training data in
the pattern space. The authors concluded in favour of a third alternative, namely a
RBF network, although they omitted to include real data experiments to justify their
theoretical claim. A more elaborate technique based on the same idea of using the
rejects to retrain the network was presented by Singh and Markou [102]. The authors
used fuzzy clustering on the novel (rejected) samples and the clusters are compared
to known class to check whether they are outliers or novel patterns. Novel patterns
are then manually labelled and the new class is added for the network training. Their
method was developed for natural video scene analysis and showed good results in
identifying novel objects in sequences (under controlled environmental conditions).
Another solution to the drawbacks of MLP was presented by Wilson et al. [103],
who used regularization methods and sinusoidal activation functions to improve the
network training and dynamics. When tested on classification of hand-printed digits
and fingerprints, the authors claimed that their methods produced better error-reject

performance and smaller neural networks.

2.3.2.2 Radial Basis Function Networks

Radial basis function networks are based on hidden units (called basis functions)
which compute the distance between an input and a prototype vector. Gaussian
functions are typically used as basis functions because of their smoothness and local-
ized properties. A major difference between MLP and RBF networks is the way they
represent (or divide) the input space. Each hidden unit in an MLP corresponds to a

hyperplane separating two regions of the input space, which leads to the open bound-
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aries problem mentioned previously. In addition, many hidden units contribute to
an output value, the process being highly non-linear with potential problems of local
minima and therefore possible convergence issues. This often yields complex network
architectures whose inner working is not easily understandable. RBF networks on
the other hand divide the input space using hyperspheres (with closed boundaries)
and produce local representations of the input space since typically only a few hidden
units (or basis functions) are activated for a given input vector. Finally, RBF net-
works typically have a simple architecture consisting of two layers, a Gaussian layer
and a linear layer to the output. Training of RBF networks uses a mix of super-
vised and unsupervised techniques, where the basis functions are determined using
unsupervised techniques (for example clustering) and the second layer is optimized
with supervised techniques. RBF neural networks are related to nearest-neighbour
classifier, Parzen kernel density estimation (or Probabilistic Neural Network (PNN)),
GMM and kernel methods in general as they attempt to fit a kernel function, such
as a radial basis function or a Gaussian function to input data points. Examples of
simple RBF networks applied to anomaly detection can be found in Brotherton and
Johnston’s paper [104], where the authors presented an interesting discussion of the
application of RBF to anomaly detection for military aircraft. They described a RBF
network, deemed class-dependent RBF network, where groups of hidden units are
associated with a single class, using k-means clustering to cluster the type of input
data. The output is a weighted sum of the output of each basis unit and the weights
are determined with a variant of least-mean squares algorithm. The authors used
Gaussian basis functions but mentioned that other basis functions such as Rayleigh

distribution or mixtures of basis functions can also be used depending on the data.
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The anomaly detection is carried out by simply assessing whether the input pattern
falls into any of the basis units, in terms of Mahalanobis distance. One or several
thresholds on the distances can be used for the classification [105] [106].

Other variations of RBF networks have been proposed. Albrecht et al. [107]
introduced a generalized radial basis function network with self-organizing properties
by adding reverse connections from the output layer to the hidden layer. Their
network is equivalent 1'30 a Bayesian Maximum Likelihood Classifier and uses globally
normalized activation functions with a small cut-off parameter to bound the patterns
producing a non-zero activation to a specific region. Their neural network also groups
neurons of the central layer together that belong to the same class. The anomaly
detection is carried-out by looking at small (vanishing) responses of the output. Their
method was tested on speech recognition with mixed success [107]. Roberts and Penny
looked at committees of RBF classifiers to alleviate the problem of local minima. This
effectively allows initializing the networks with different random weights, thereby
producing different sets of optima (or minima in the input space) [108]. This in turn
allowed them to derive error and confidence values on the classification.

PNN implement Parzen window density estimation and therefore exhibit the same
advantages/disadvantages. PNN are fast to train and retrain since they only require
one pass through the training set. However, they have high memory requirements,
which may be limiting. They can be implemented as a radial basis network in which

the second layer is a competitive layer.
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2.3.2.3 Support Vector Machines (SVMs)

SVMs were originally propose(i by Vapnik [109]. SVMs map input patterns onto a
high(er) dimension space where patterns can be separated by an optimal hyperplane.
The mapping is achieved through a kernel function, usually non-linear. Typical kernel
functions are polynomial and Gaussian. The training of SVMs consists of finding
the optimal hyperplane that maximizes the margin between two (or more) classes.
The vectors that are at the maximum margin of the optimal hyperplane are called
support vectors. SVM classifiers are completely characterized by the support vectors,
which greatly reduces their complexity and makes them less prone to over fitting
issues [96]. Note that the support vector description formalism can be viewed as a
generalized classifier with several other classifiers as special case. For example, if the
kernel is chosen to be Gaussian, the SVM classifier created is essentially equivalent
to an RBF neural network. The difference however is that the number of centres is
determined automatically and only the width of the Gaussian needs be adjusted. This
usually results in better performance than classically trained RBF networks [110].
The original SVM method proposed by Vapnik was a binary classification problem
(two classes). For anomaly detection (when only one class is available), the objective
function and constraints of the optimization problem need to be adapted. Two main
techniques were introduced. The first one tries to find the hyperplane in the feature
space that represents the maximal margin separating the origin of the space from
most of the data [111]. In other words, this method attempts to separate the region
containing the data from the region containing no data. A parameter C controls the
number of outliers allowed (soft margin). The second technique consists of finding

a hypersphere with minimal radius that fits most of the data [112]. A parameter C
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controls the trade off between the volume of the sphere and the number of outliers. For
both techniques, once the optimal hypersphere or hyperplane has been determined,
any input data outside of the region delimited by the hypersphere (or hyperplane) is
considered novel. The choice of the kernel depends on the data but is often chosen
to be Gaussian or polynomial. However, kernels tailored to specific applications (e.g.
images) may provide better performance as suggested by Barla et al. [113]. Note
that kernel parameter(s), for example, the width of the Gaussian function, greatly
affects the performance of the classifier. There is no general method for setting
them but they can be optimized by validation process (cross-validation, leave-one-
out, bootstrap methods). The two basic SVM methods for anomaly detection have
several drawbacks. For example, Tax et al.’s method requires a large dataset and does
not perform well when large differences in density exist. Creating artificial outliers
around the target class improves the performance results if a tight representation of
the target data is available [112]. Otherwise it does not scale well to high-dimensional
data. On the other hand, Sch olkopf et al.’s method relies too heavily on the origin
of the feature space, which effectively assumes that abnormal instances will lie at
the origin [110] [111]. Also, the method is extremely sensitive to the choice of kernel
parameters. Several modifications addressing some of the drawbacks of basic methods
have been proposed in the literature. Campbell et al. suggested focusing on the centre
of the data distribution rather than the origin [114]. Manevitz et al. proposed instead
to consider all data points close enough to the origin as outliers or abnormal data.
This was achieved by thresholding the feature vectors [115].

Applications of SVM-based anomaly detection methods include fault detection,

handwritten digits recognition, document classification and network intrusion. A
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combination of supervised Principal Components Analysis (PCA) and novelty detec-
tion SVM methods was applied to object detection in 3-band medium wavelength
infrared images for video surveillance applications in [116]. Chapelle et al. applied
SVM classifiers with generalized Gaussian, Laplacian and sub-linear kernels to colour
image classification based on colour histogram features and obtained very good per-

formance on a large database of different categories of colour images [117].

2.3.2.4 Self-Organizing Networks

The last group of neural networks used for anomaly detection are self-organizing
networks, which typically use unsupervised learning algorithms. They include self-
organizing maps and adaptive resonance theory. Self-Organizing Map (SOM) may
be described as a nonlinear, ordered and smooth mapping of high-dimensional input
data domains onto the elements of a regular, low-dimensional array [118]. They are
a common technique of unsupervised learning that is an alternative to statistical
clustering algorithms. One of the important features of SOM networks is that they
preserve the topological information to a certain extent. Indeed, the SOM algorithm
performs competitive learning but updates a neighbourhood of the winning node as
well. Hence over time, nodes that are close to each other in the low-dimensional array
respond to similar inputs and the set of local neighbourhoods self-organize to produce
a global ordering [119].

SOM were developed early on as a novelty filter with or without memory (with or
without forgetting capabilities). SOM networks have been applied to several anomaly
detection problems, in particular fault detection and monitoring in industrial set-

ting [120-122] and network intrusion detection [123]. After training, most approaches
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threshold the distance between a test pattern and the activated neuron for novelty (a
large distance indicates that the sample is far from all known clusters and is there-
fore deemed novel) or they keep track of the activated neurons on the basis that
novel/abnormal inputs will activate different neurons than normal inputs.

A natural extension to SOM networks as an attempt to better model the brain
mechanisms of learning is the process of habituation. Habituation is a reduction
in the strength of a response to a stimulus when the stimulus is seen repeatedly
without any ill effects [119]. It can be interpreted as a simple novelty filter, since
the focus of attention is shifted away from features that are seen often to concen-
trate on other features that are unusual. Marsland et al. added the concept of
habituation to self-organizing maps and applied it to anomaly detection for a mobile
robot application [124]. Extending their previous work, Marsland et al. presented
a new self-organizing neural network for novelty detection called the Grow When
Required (GWR) network [125] [126]. The GWR network is a self-organizing net-
work that keeps track of how many times a node has fired with an exponentially
decreasing variable between 1 and 0. Nodes that fire frequently are trained less than
others. If a node has never fired or fires very infrequently, then the input is deemed
abnormal.

Other self-organizing networks based on similar principles have been investigated.
ART networks attempt to create stable memories from inputs using match-based
learning (Match-based learning is similar to template matching in image processing
applications) [119]. They are based on a leader-follower strategy where the node (or
cluster centre) closest to the input pattern is changed to be somewhat more like the

pattern. However, if the input pattern is very different from all the existing nodes, a
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new node is added to the network to represent the new cluster. ART networks consist
schematically of two layers, the layer of cluster centres and a layer that receives the
input data, feedback from clusters and a time-varying bias signal (to keep a constant
level of activity in the layer). The comparison between the signal from the feedback
connections and the inputs is thresholded with a parameter called vigilance that
determines whether to assign the input to an existing cluster or to create a new
one. The convergence of the feedback connections over time is called a resonance.
Fuzzy ART-MAP and ART-MAP-FD (ART-MAP with Familiarity Discrimination)
are supervised variants of ART networks where each weight vector creates a hyper-box
around all the input vectors belonging to a class. Anomaly is based on a thresholded
familiarity function, which determines whether a pattern belongs to one of the hyper-
boxes defined by weight vectors. Setting the threshold for the familiarity function is
crucial for good performance. This technique was applied to simulated radar target

recognition [127].

2.3.3 Dimension Reduction Methods

Dimension reduction methods attempt to reduce the dimensionality of the input
space by extracting the most important discriminatory components. Various algo-
rithms are available that attempt to extract linear or non-linear components from the
input patterns in the input space directly, or in a space of higher-dimension, accessi-
ble through kernel mapping, where the extraction process is easier. These methods
have been tested on various databases (University of Manchester Institute of Science
and Technology face database, University of California Irvine (UCI) repository of

machine learning databases, United States Postal Service (USPS) handwritten digit
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database and Olivetti-Oracle Research Lab face database) with various degrees of suc-
cess. Among notable papers are Zhang et al.’s paper [128] where the authors propose
a kernel auto-associator technique consisting of a mapping to a higher-dimensional
space with a Gaussian kernel and a class-specific reverse mapping with linear or
polynomial functions. Their method is shown to perform as well as or better than
various novelty detection techniques (auto-encoder, SOM, MLP, SVM, K-Nearest-
Neighbour (KNN)) on several databases (Promoter DNA, Sonar data, faces). An
example of a simple auto-encoder (which is in essence an implementation of PCA)
used to detect anomalies can be found in [129], where the method is applied to fault
detection in helicopter gearbox data and two datasets from the UCI repository. Simi-
lar auto-associative strategies have been used for fault detection or structural damage
detection [130] [131]. Auto-associators have also been applied to document classifica-
tion problems and compared favourably with techniques like nearest-neighbour and
naive Bayes [132]. Auto-associative methods require a careful setting of the novelty
threshold in order to obtain acceptable performance; in most cases, the threshold
selection procedure will depend heavily on the quality of the training samples.
Another approach proposed by Tax and Duin [133] combines the outputs of several
multi-class linear classifiers and assesses the variation between the outputs for various
training sets. A large variation in the outputs indicates that a sample is hard to
classify and is likely novel. Ko et al. proposed a three stage architecture using
5 auto-associator networks followed by a probabilistic neural network and a back-

propagation MLP to monitor structural damage in bridges [134].
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2.3.4 Summary of Anomaly Detection Techniques

In the previous sections the stéte—of—the—art in anomaly detection for a variety of ap-
plications was presented. Few methods dealt specifically with infrared imaging and
none with infrared imaging of the human body. However, it is more appropriate to
put the problematic of this thesis into a more general context, in order to highlight
the potential of each basic approach (statistical parametric and non-parametric ap-
proaches, MLP, RBF, SVM and unsupervised networks). In order to do so, various
techniques derived from each basic approach were described as well as their applica-
tion to problems such as industrial fault detections, network intrusion or fingerprint
and handwritten character recognition. It is unlikely that those methods would trans-
late well to IR image processing applications, since the specificities of the problems
considered are quite different. Anomaly detection techniques developed for ATD are
also limited by the fact that they assume extensive knowledge of the target. In the
case of clinical thermal IR imaging, abnormal thermal patterns for all but a few
pathologies have not been well characterized and classified as of yet. As a result,
supervised approaches on their own will likely fail.

From the previous review, the most promising approaches are based on multilayer
perceptron networks, support vector machines and self-organizing networks. RBF
networks and several other networks can be viewed as special cases of support vector
machines and therefore need not be included. Using the key advantages of these three
approaches, it is not unreasonable to think that a smart combination of the different

networks might achieve better overall classification rate than each method on its own.
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Chapter 3

Processing Architecture

This thesis proposes a general framework for automated detection of anomalies in
clinical IR images. Within that framework, this thesis addresses two fundamental
problems: the segmentation of a main object from the background; and the extraction

of relevant, potentially abnormal, ROIs.

3.1 Overview of Anomaly Detection Architecture

An overview of the anomaly detection architecture is presented in Fig. 3.1. Note that
the entire architecture is shown here but the focus of this thesis is on the segmentation
and the ROI extraction blocks only.

The IR anomaly detection architecture can be summarized as follows:

1. A preprocessing block is used to parse the images according to the body re-
gions they represent. This step is currently done manually. Also in this block,

denoising is performed if necessary.
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Figure 3.1: Overview of IR anomaly detection architecture. The circled numbers
indicate where the major contributions are for this thesis.
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2. Once the body region has been identified and noise removed, the image is sent
to the segmentation block. The segmentation strategy is based on a fusion of

three different types of segmentation techniques:

e Standard region-based techniques: optimal thresholding and FCM cluster-
ing based method. These methods focus on general regions whose grey-

level intensities are similar.

e A novel approach based on the classification of edge components by a clas-
sifier. In this work, both a MLP neural network and a SVM classifier were
implemented. This approach determines whether an edge component be-
longs to the contour or not. It is therefore purely edge-based and produces

contour edge components.

e A novel approach based on the morphological processing of edge maps us-
ing a priori local and global information; This method is a hybrid between
region-based and edge-based techniques. It uses region-based information

to process the edge components.

Although each segmentation technique might produce reasonably good results
on its own, it is expected that the fusion of all techniques might overcome
the shortcomings of each one. It is also expected that the difference between
each technique will benefit the fusion process. Several fusion strategies are

introduced and evaluated. The resulting image contains only the body region

to be analyzed.

3. Potential ROIs (within the main body region) are then extracted. If prior

information about the application is available, anatomical ROIs may be deter-
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mined. A novel approach is introduced to detect anatomical landmarks on the
contour of the body region extracted in the previous block. It relies on a cur-
vature analysis of the contour, region specific constraints and the symmetry of
body regions to sort through the potential landmark sites and return a few key
anatomical landmarks. From these landmarks, anatomical ROIs are extracted,

using anatomical templates.

On the other hand, if no prior information about the application is available,
gradient-based, intensity based and entropy-based operators are used to filter
the body region and highlight specific characteristics. The resulting feature
map is thresholded to return a set of clusters of interest. In parallel, a cluster-
ing algorithm is applied to the segmented body region, yielding another set of
clusters of interest within the region considered. The two sets of clusters are

then merged-together to produce the final clusters of interest.

If more than one region is available, for instance contralateral regions or the
same body region from a different image, then comparable anatomical regions
or clusters of interest should be extracted as well from the other image or region.
The extraction of comparable regions is facilitated by the key landmark points

previously found. All regions and clusters of interest are pooled together.

4. This step consists of extracting relevant features from the ROIs produced by the
previous stage, either anatomical ROIs or clusters of interest. The number and
types of features used may be driven by additional information available on the
application. For instance, difference statistics or similarity measures between
contralateral sides within or between images can be computed if one is looking

at asymmetrical trends between one arm and the other arm. Post-processing
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of the array of features in the form of feature selection or principal components

analysis is application dependent.

5. The final stage consists of classifying each thermal pattern (possibly comprising
several ROIs) as normal or abnormal based on the previous features. Based
on the amount of a priori information available about the application, the

classification will likely differ, being either supervised or mostly unsupervised.

The knowledge base block in Fig. 3.1 refers to a priori expert knowledge that is
“available before processing, acquired during processing or extracted after processing.

It may consist of:

e Knowledge from the acquisition of the thermal IR images, for instance the type

of view and body region or information about the type of noise expected.
e Database of labelled edge patterns for the classification of edge components.
e Anatomical landmark information for specific applications.
e Features relevant to specific applications.
e Database of labelled thermal patterns.

Although not indicated on the diagram of Fig. 3.1, the knowledge base is ideally
updated to incorporate information gained through the processing and final classifi-
cation stage.

The next sections give more details about each processing block of the IR anomaly

detection architecture.
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3.2 Preprocessing

Pre-processing of thermal images involves correcting for possible artifacts created
by the imaging system, including the removal of any noise. The choice of a noise
removal method is linked to the type of imaging system used, its quality and the type
of noise created. The noise in modern IR systems is usually well characterized by a
Gaussian distribution, but is not always additive. IR imaging systems based on photo-
detectors are better modelled by Poisson noise and adapted noise removal procedures
must be considered [27] [47]. In the application considered here (i.e. IR images of the
human body in a closed and controlled environment), the signal to noise ratio was
typically high enough so that no extra processing was required on most images. Noisy
images from the first generation camera were denoised using a stationary wavelet
transform method that kept fine details in the image. The choice of wavelet basis,
a (9,7) biorthogonal spline wavelet, was made based on earlier research [135]. This
wavelet basis has four vanishing moments (for both the wavelet and scaling functions),
a compact support, and the decomposition/reconstruction filters generated from it are

symmetrical and have linear phase, which ensures minimal distortion in the resulting

denoised image [136-138].
3.3 Segmentation

The typical background of clinical IR images is relatively simple with few objects
present. However, the intensities of the objects of interest and that of the back-
ground regions may overlap, for example when imaging a person with cold fingers
at ambient temperature or when one wants to extract the arm from a side view of

the body. Also, the background intensity may not be constant across the image,
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due to variations in the emissivity of background objects. This is especially true for
images of the extremities (hands and feet), for which temperature variations between
one end to another can be significant (> 10°C) even under normal environmental
conditions. As a result, parts of these body regions (e.g. the fingers, toes) may be
at the same temperature as the background temperature, which complicates greatly
their segmentation. Thresholding techniques (global, locally adaptive) and clustering
methods (for example fuzzy C-means), typically do not perform very well on their own
in these situations. They often miss important regions of the object of interest (e.g.
whole fingers in poorly contrasted images) or produce larger than expected regions
where all fine details are lost. For the difficult regions of the extremities, it seems
unavoidable to include some a priori information about the shape of the region of
interest. This additional shape information allows retaining fine details of the region
while removing irrelevant information. For example, if it is known that the main
region is a hand, expected shape information can be included in the segmentation
strategy to help recover missing areas (such as a cold phalanx).

There are two main types of regions to be segmented. The first one is a unique
region against a background, such as an IR image of the upper-arm for example. The
second type of region to segment is a limited part of a body region, such as a breast
or a side view of the shoulder. For the latter type, the segmentation is complicated
by the fact that there is no obvious difference in terms of temperature between the
body regions one wants to isolate and the rest of the body. For instance, if the whole
arm is required from a side view, as in Fig. 3.3 a) the problem of finding the contour
of the arm at the shoulder is not trivial. The region boundaries in this case are also

somewhat subjective unless an extensive set of markers are placed on the image for
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instance. Again, a priori information seems necessary to help recover the wanted

region of interest in this case. Figs. 3.2 and 3.3 show some examples of the first and

second types of regions to segment.

(a) Infrared image of a hand (b) Infrared image of an upper-arm

Figure 3.2: Examples of the first type of segmentation: hand and upper-arm.

(a) Shoulder view (b) Breast thermogram

Figure 3.3: Examples of the second type of segmentation: breast thermogram and side
view of the arm.

A general strategy is introduced for segmenting the main region of interest from
IR images. It consists of a combination of three different approaches to segmenting

IR images, two of which are novel techniques introduced in this thesis. The first novel
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approach is based on morphological proceséing of edge maps using local and global a
priori information about the region to constrain the segmentation. It is referred to
as Cued Morphological Processing of Edge Maps (CMpEm) in the remainder of this
thesis. The second novel approach is based on the classification of edge components
through a MLP and a SVM classifier, to determine whether an individual edge com-
ponent belongs to the contour or not, based on its features. Finally, the third one is
one or several region based segmentation techniques, either optimal thresholding or
FCM clustering. The CMpEm is a key part of the segmentation strategy, as it will be
shown to consistently outperform other techniques in a variety of scenarios. However,
since an excellent segmentation is crucial for reliable ROI extraction and subsequent
processing, if the performance of the segmentation step can be further improved, it
should be done. For each of the segmentation groups shown in the diagram of Fig.
3.1, a fusion strategy will improve the total performance of the system by using the
complementary contributions of each segmentation technique. This is also desirable
because it adds flexibility to the architecture, allowing other segmentation techniques
to be integrated as needed.

The two novel approaches are described in the following paragraphs, followed by

a description of the fusion process.

3.3.1 Cued Morphological Processing of Edge Maps

The first novel segmentation technique applies morphological processing directly to
an edge map comprised of both strong and weak edge components, in order to recover
the contour of the object of interest. Working on the edge map allows one to recover

edges and contours in very low contrast and high noise situations. In addition, a
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small amount of a priori information about the expected shape of the region to
segment is used in order to constrain the morphological processing of edges. Edge
components are extracted using the Canny edge detection technique, which allows
the detection of most weak edges thereby capturing fine details [139]. Mathematical
morphological processing on the other hand is flexible enough to recover the general
contour and shape of the main region. The main steps of the segmentation procedure

are summarized in Fig. 3.4:

Preprocessed
Image
Canny Edge
Detector
Bridging and flood- | 4_
filling === ~ .
- !
I' Stage 1: ‘.
1 Consolidation of all '
| .
Dilated smallest convex | 1 regions H
polygon enclosing largest | :
connected component ! v :
Stage 2: ! )
Extraction of main :Mg:‘;))g::;?r:cal
region : 9
A Priori ¢ :
Knowledge !
Stage 3: !
Cued Morphological !
Closing on N largest Closing /
components using o -’
adapted structural | T T TTT[TTTTT
element
Segmented
Object

Figure 3.4: Overview diagram of cued morphological
processing of edge maps.

Fig. 3.5 shows an example of the segmentation steps for an thermal infrared image

of a hand. The segmentation steps are detailed hereafter:
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(8) () (i)

Figure 3.5: Hand segmentation example. a: Original image. b: Canny edge detection. c:
Remove border, line-like components. d: Bridging, flood-filling. e: Keep com-
ponents within main convex hull. f: Majority operation, threshold orientation
and keep N largest components. g: Extract potential finger components. h:
Cued line closing. i: Final segmentation.

1. Edge detection using Canny’s technique (Fig. 3.5(b)). Each connected edge

component is labelled.

2. Remove border edge components based on their centroid, and line like compo-

nents based on their eccentricity (Fig. 3.5(c)).

3. Minor gaps between edge components are bridged and a flood fill operation
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consolidates the largest region, under the assumption that there is only one
object of interest and that this object consists of a unique region. If the size
of the biggest filled region is very small, switch bridge operation to closing
operation with increasing disk size until region has a reasonable size. This

ensures that the filling is not stuck to a small area of the edge map (Fig. 3.5(d)).

4. The edge components outside of a dilated version of the smallest convex polygon
enclosing the largest edge component are discarded. This step ensures that the
edge components that are part of the object of interest are kept, although they
might be disconnected from the main region from the previous step. It also
eliminates most irrelevant edge components that are not part of the object of

interest (Fig. 3.5(e)).

5. Majority operation to remove isolated components and spurious edge pixels
(Fig. 3.5(f)). For binary images, this simple morphological operation consists
of setting a pixel to 1 if a majority of the pixel in its neighborhood are equal to

1 and zero otherwise. A neighborhood of 3 x 3 was used in this thesis.

6. A maximum of N largest connected components are kept. The other ones are
discarded. N is based on @ priori information about the region. For instance,
if the object of interest is a hand, N would be chosen to be 5. Note that this

step is optional (Fig. 3.5(g)).

7. Final morphological “cleaning” operation. Filter out components whose orien-
tation is very different from the main filled region. If more than one region
remains, a morphological closing using a structural element adapted to the

expected shape of the region to segment is performed. For example, if the ex-
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pected shape is a hand, a line structural element is used, along the direction
of the largest region found so far. This bridges the gap between disconnected
regions belonging to the same shape and recovers regions that are typically

missing from segmentations using other methods (Fig. 3.5(h)).

8. A final flood fill operation is performed and the contour of the resulting region

is extracted by removing interior pixels (Fig. 3.5(i)).

3.3.2 Classification of Edge Components

The second approach consists of classifying a set of features describing the shape,
location and orientation of each connected edge component found by a Canny edge
detector. This will not yield a fully segmented contour in general, except in simple
cases but it can provide an indication of how likely an edge component is to belong to
the actual contour. As a resﬁlt, when used in conjunction with the CMpEm or even
with simpler methods, it can help recover some otherwise lost parts of the contour.

The set of features used was the following:
e Area, Perimeter

e Lengths of the minor and major axis, eccentricity and orientation of the ellipse

with the same normalized second moments as the connected component

e Diameter of the best fitting circle around the connected component

Solidity and extent: proportion of the pixels in the convex hull (bounding box

respectively) that are also in the region

Centroid (centre of mass of the connected component)
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The resulting database of training patterns and labelled targets (whether an edge
component belongs to the expected contour or not) is then passed on to one of two
classifiers: an MLP feed-forward, back-propagation neural network and a support
vector machine classifier. Since most edge components do not belong to the contour
of the object, there is a disproportionate amount of negative patterns in the training
database submitted to each classifier. This is an issue for most classifiers that often
leads to over-fitting of the negative class representing the background. The SVM
formulation presented hereafter deals with this elegantly by simply changing the ob-
jective function to be minimized. For the MLP, there is no simple way to account
for the uneven classes and therefore, the positive patterns were randomly resampled
until the number of positive and negative patterns was equivalent.

The first classifier is based on C-Support Vector Classification (C-SVC), one for-
mulation of the support vector machine framework [140]. It is a soft-margin imple-
mentation of the SVM formulation, where a weight parameter C is introduced to
minimize the error on the margin due to outliers and noisy data points. C-SVC
attempts to solve the following optimization problem:

For training patterns z; € R”, ¢ = 1...[ from two classes, and a target vector

y € R, such that y; € {—1,1}, solve:

1 7
min 5w w—l—CZﬁi (3.1)

!
wibé -
subject to y; (WTp(z;) +b) > 1—¢& and & > 0 for i = 1...I. Or equivalently its dual

problem:

min 1ozTQa —ela (3.2)
a 2
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subject to yTa = 0 and 0 < o; < C for i = 1...[, where w are the support vectors,
e is the matrix whose all components are 1, C > 0 is the upper bound on the
margin error, ) is an [ x [ positive semi-definite matrix where Q;; = y;y; K (i, 25)
and K(z;,7;) = ¢(x;)" $(x;) is the kernel mapping the training vectors into a higher

dimensional space through ¢. The decision function is given by:

sign (Z yiou K (2:2;) + b) (3.3)

i=1

The first term in Eq. 3.1 attempts to maximize the margin between the two classes
in the high dimensional space, while the second term is a regularization (or smoothing)
term that approximates the minimization of the probability of misclassification [140].
The C-SVC formulation is easily adaptable to the case of an uneven database. The
objective function to be minimized is adjusted by varying the weight coefficient C for
positive and negative patterns.

The kernel can be viewed as a nonlinear similarity measure between patterns [109)].
It describes the geometric relationship between input pattern and the support vec-
tors that characterize the difference between two classes. Common nonlinear kernels
used in classification include polynomial kernels K(z;, ;) = (yz; - ; + 1)? where
d is the degree of the polynomial, radial basis function kernels e~7l%i—%; ”2, where
7 is proportional to the width of the Gaussian basis function and sigmoid kernels
K(z;, ;) = tanh(azlz; + r), where a is a gain and r a threshold value. Other ker-
nels can be created so that they fit a particular application, as long as they satisfy
the Mercer condition, which means that for all square integrable functions g(z), the

following holds:

] K@va@gwyiaay 0 (3.4)
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Sigmoid kernels have been shown to be equivalent (in terms of decision function) to
radial basis function kernels for certain range of values for a and r [141]. However,
finding the optimal parameter for sigmoid kernels is not straightforward because the
kernel matrix is not positive semi-definite for all values of the parameters a,r, which
means that there is no primal-dual relationship between Eq. 3.1 and 3.2 and solv-
ing the optimization problem is a lot more difficult [141] [109]. Kernels specifically
designed for image processing have also been investigated [113] [117], in the context
of object detection and similarity between images. However, they would not benefit
our analysis since the input patterns to classify in our scenario are not intensity-
based features but feature vectors that are derived from edge components and that
characterize the shape of the components. In addition, the classification task differs
as well, since the goal is to classify edge components and recover a contour, while
image-specific kernels typically try to detect an object or a particular type of image.

In this thesis, both polynomial and RBF kernels were investigated in order .to
assess the general performance of the C-SVC classification of edge components. The
design of kernels specifically tailored to the classification of edge components could
improve the correct classification rate and the overall contour detection but in this
thesis the focus is on proving that the classification of edge components is a viable
alternative even with simple generic kernels.

The second classifier, is a feed-forward back-propagation (1-input layer, 1-hidden
layer, 1-output layer) multi-layer perceptron, with logistic sigmoid activation func-
tions and a cross-entropy error function. The cross-entropy error function is better
suited to binary classification problems than a sum-of-squares error function, because

the latter is derived from the maximum likelihood principle assuming the target data
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is from a smooth deterministic function with added Gaussian noise. This is not always

the case for binary targets [89]. The cross-entropy error function is defined as [89]:

E=- Z (tilny; + (1 —t;) In(1 — ;) (3.5)

i
where ¢; = 1, if pattern i belongs to the target contour, 0 otherwise; and y; is the
output from pattern ¢. One advantage of this formulation is that the output is a
probability estimate of an edge component belonging to the expected contour, when

‘a logistic sigmoid activation function is used [89]. The logistic sigmoid activation

function is given by:
1
l4e®

f(z) (3.6)

3.3.3 Region-Based Segmentation

Two types of region-based segmentation techniques were considered: a global optimal
thresholding and a FCM clustering procedure. The global optimal thresholding tech-
nique is the algorithm proposed by Otsu [142], which separates the histogram of an
image in two classes and minimizes the interclass variance between the two classes.
It is a simple yet effective method that works best in the case of a bimodal histogram
distribution.

The segmentation based on FCM clustering that was implemented in this thesis is
a variant of the classical FCM clustering algorithm proposed by Wu et al. [50], where
information about the local neighbourhood is taken into account when updating the
membership values. The classical FCM clustering algorithm is similar to a K-means

clustering algorithm where at each iteration data points - in our case pixels - are
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assigned to the closest cluster of a pre-specified number of clusters, based on the
distance to the centroid of clusters, until convergence. However, in FCM clustering
each data point is given a cluster membership value instead of being assigned to a
specific cluster. This membership value reveals how much a data point belongs to
each cluster. When the algorithm has converged, the final membership values can be
thresholded to obtain the final clustering. In Wu’s variant, at each iteration, after
calculating the membership values for each pixel, the resulting membership matrices
(for each cluster) are filtered with a low-pass filter of a given spread. This changes
the membership values within a given neighbourhood. This algorithm was tested
successfully on infrared images by Wu et al. and is therefore a valid candidate for
comparison with our approach or for possible integration in the fusion scheme.

A third method was tested and compared with our other approaches. It consists
of a level-set active contour method. Active contour methods start from an initial
guess of a contour and evolve that contour under internal and external forces until
convergence. The stopping criterion is typically gradient based which means that
convergence is typically achieved at the boundary of objects. In the level set imple-
mentation of active contours found in [143] [144] the contour is represented as the
zero level set of a two-dimensional function z = ¢(x,y). This allows one to represent
implicitly any arbitrary topology of the object shape and it ensures continuity of the
surface @¢(z,y). In particular, it is able to represent an object composed of several
discontinuous parts. The level-set is a variational optimization technique that com-
putes the evolution of a contour under a velocity field, which may depend on position,
time, geometry of the contour or external forces [143]. Active contours have been

used in an IR imaging context by Zhou et al. [52].
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3.3.4 Segmentation Decision Fusion Process

Throughout this section, the term classifier will be applied loosely to all segmentation
techniques, including the CMpEm, Otsu and FCM techniques, which can be viewed
as classifying each pixel as contour or background.

Decision fusion techniques are numerous in the image processing literature. As
discussed in [145] and [146], when classifiers are very different in nature and the only
common parameter is the format of their output (e.g. a class label), then voting
schemes are most appropriate to combine the decision from each classifier. Each
algorithm produces a binary value for each pixel, either one if it is estimated that it
belongs to the contour or zero otherwise. The simplest voting strategy is a majority
voting. If K is the number of classifiers, then for each pixel, if at least %, for K
odd, or %, for K even, classifiers agree that the pixel belongs to the contour, that
pixel is set to one.

A straightforward variant of the majority voting is to weigh the contribution of
each classifier depending on their reliability estimate. These can be obtained from the
classification performance of individual methods on test databases, by normalizing the
performance criterion with respect to the best performer. The performance criterion
in our case is the percentage of segmented contours that are within 90% or more in
agreement with the ground truth contour, based on the Haussdorff distance between
the two contours. For the case of binary weights, a full search for the best weights
is possible since the number of classifiers used in this thesis is relatively small. This
basically amounts to choosing the combination of classifiers that minimizes the error
on a test database. This constitutes the first fusion alternative. For non-binary

weights, the positive predictive value of each segmentation technique was used to
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weigh their outcome and the majority voting was applied to the sum of all outcomes.
A search for the optimal weights was also performed using the test database and the

following objective function:

min (1 — Y Hai, w)) (3.7)

1€Sgy0

where H,,(i, W) represents the distance between the ground truth and the computed
contour for image ¢ using weight vector w to weigh the contour found by each individ-
ual segmehtation algorithm; The sum is on the images where the distance is greater
than 0.9, which in our case means that a contour agrees with the ground truth on
90% of the contour. In addition the weights were chosen positive and the sum of the
weights was constrained to be equal to 1.

Note that so far the weights were applied to each method at image level, not at
the pixel level. In addition, when using the performance criterion or the positive
predictive value mentioned previously as weights for the majority voting scheme,
all the information from the negative results of each algorithm (false positives and
false negatives) is not used. Using a Bayesian formalism, it is possible to use the
information from misclassified patterns in order to estimate the probability that a
pixel is on the contour or not [146]. First confusion matrices are derived for each
classifier based on their individual performance on a test database. In our case, the
confusion matrices are 2 x 2 matrices, representing the proportion of true positives,
true negatives, false positives and false negatives for each classifier. The probability

that a pixel belongs to the contour based on the observations from each classifier is
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then given by [146):
[Tr, P(i, 5 € Cyobsy (i, 5) = n)
> TIE, PG, § € Culobsi(i, §) = n)

P(i,j € Cp) = (3.8)
where C,, is the class (here 1 or 0), obsg(4, 7) = n is the outcome from classifier k£ and
pixel 7, j, K = 5 is the number of classifiers. The denominator is a normalizing term.
The probability that a pixel 4, 7 belongs to class Cy, knowing that the outcome from

classifier k£ is my, can be estimated from the confusion matrix of classifier & by [146]:

. . . . pmn
P(i,j € Cp/obsi(i, j) = ng) = —— 3.9
¥ /0bsk (i, ) = nx) P——— (3.9)

where pn, is the number of samples belonging to class m that were classified as
belonging to class n by a given classifier. The sum in the denominator reflects the
binary class problem considered in this section. The final decision on whether a pixel

belongs to the contour or not is as follows:

1 if P(i,j € C1) = maxy(P(i,5 € Cp)) > a,
AGi,) = 1 (3.10)

0 Otherwise.
where « is a constant in [0, 1] that allows one to adjust the trade-off between specificity
and sensitivity.

Finally, a new fusion technique was introduced. It uses a priori information about
the agreement between segmentation techniques and morphological post-processing
operations. Majority voting schemes discard the information from the classifiers be-
longing to the minority on a pixel-by-pixel basis. Since majority voting schemes are

based solely on the final decision of each classifier, they do not take into account the
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local spatial information that may be relevant for a correct final decision. In addition,
the previous fusion strategies work best if all classifiers are independent from each
other, which is not the case in this thesis.

Intuitively, if we assume that all classifiers perform reasonably well, when there is
a large difference between the outcome of two or more classifiers, the correct contour
may not be the contour that is most agreed upon but rather a mix of the different
contours produced. In an information theoretical context, this would be equivalent
to maximizing the entropy. It is also similar to the previous concept of using the
errors from each method to increase the accuracy of the final prediction, except that
it does not have to be limited to a decision on a pixel basis but can be applied to
the entire image at once. In order to combine the contours, a priori information
about the performance of each algorithm is needed, as well as the general agreement
between each method. The latter is an indication of the dependence between each
individual method. The performance of individual algorithms is readily available
through testing. The agreement can be estimated by computing a robust distance
between the contour returned by each algorithm on a test database. A good agreement
between contours is not necessarily a perfect match but a reasonably small distance
between the two contours. This ensures that minor changes between two contours
does not affect the overall measure of agreement. From all this, the following rules

were used in combining the different segmentation algorithms:

1. Discard algorithms with a high agreement with other algorithms and worse
performance. Sort the remaining algorithms in terms of their performance.

Algorithm 1 is the best, algorithm 2 the second best and so on.

2. Compare the contour from algorithm 1 with that of all remaining algorithms.
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o If at least one algorithm agrees with algorithm 1 with a certain predeter-
mined percentage of agreement (90% for example), then keep the contour

from algorithm 1 as the final contour.

e Else move to the next best algorithm and increase the agreement require-

ment (to 99% for example) to account for the decrease in accuracy.

3. If there is no match between any of the algorithms, add the contours found by

each algorithm together and perform the following:

¢ Small morphological closing operation to close small gaps in the resulting

binary image.
e Flood-fill operation to fill holes in the binary image.

e Small morphological opening operation to smooth out artifacts.

3.3.5 A Particular Case: Breast Segmentation

Isolating breasts in thermal IR images is difficult. The breast boundaries are not easily
found on visible images either and their reliable extraction often requires additional
active methods such as pushing upward or sideways on the breast to emphasize the
top or side boundaries on the breast image [147]. This is-not possible in the case of
thermal imaging of the breast for obvious reasons. As a result, the detection of the
contour of the breast is somewhat subjective and only a qualitative analysis of the
segmented results is meaningful.

The lower contour of a breast may be partially or totally found using edge detection
techniques. On the other hand, the top portion of the breast needs to be estimated,

since there is no clear partition between breast and the upper part of the chest.
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The method proposed by Qi et al. uses the Hough transform to detect lower breast
contours [35]. However, the Hough transform is computationally expensive and is
very much dependent on the edges found by the edge detector. It also assumes that
the lower contour of the breast follows a specified parametric shape, which is not
always true. As a result, this method fails when the lower breast boundary is not
well defined.

The following method was introduced to recover the breast regions when the edge
detector failed to find strong breast boundaries, in which case both Qi’s method and
Scales’ method do not perform well [35] [34]. First the regions corresponding to the
two nipples were found. In most cases they were much colder than the rest of the
breast region and were easy to find through simple thresholding. The locations of
the armpits and the bottom of the chin were also found by looking at the outermost
contours of the body region, which were always well defined against the background.
For detecting the outer contours of the body, a Sobel differential operator was used
(horizontal and vertical masks) to find the strong edges corresponding to the outer
body contour. The location of the armpits were found by looking at the point of
highest curvature for left and right outer contours. Note that the thermal imaging
of breasts requires the patient to raise their arms so that they do not affect the
temperature of the side of the breast. This standard view simplified the armpit
localization process. If the chin was present, it was consistently colder than the chest.
The chin landmark could therefore be located by looking for the colder region situated
in the middle portion of the body, above the armpits. The mid-line between left and
right side of the body that is used for determining the middle portion of the body

was estimated by calculating the distance between leftmost and rightmost contour of
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the body. If the chin was not present in the breast thermogram, the topmost point
along the contralateral symmetry line (mid-line previously defined) was used instead.
Both armpit and chin (or topmost point on the symmetry line) were used to limit the
segmentation to the area most likely to contain the breast.

The breast image was then divided into left and right side. The outer contour of
the body was also removed at this stage. The resulting image area was passed through
a Canny edge detector. The threshold for the Canny edge detector was determined
adaptively by fixing a lower threshold on the density of the edges detected, defined
as the ratio of the pixels belonging to edges to the total number of pixels in the
region. Although the lower threshold on the density of edge components needs to be
determined empirically across a range of breast images, it is a more robust parameter
than the upper and lower thresholds on the Canny edge detector, since these can
vary greatly from one image to another. Edges outside of the areas likely to contain
the breasts were removed. Detected edges were further trimmed of all edge contours
corresponding to purely vertical or horizontal lines since they were likely artifacts
from the edge detection or from the image itself and did not relate to intuitive breast
features.

The centre of mass of all the remaining edge components was determined and edge
components closer to this centre of mass were considered more likely to belong to the
breast area. An inclusion factor F' that determined whether an edge component was
close to the centre of vmass or not was derived from an estimate of the breast size,
using the mean distance from the nipples to the armpits, the mean distance from
the nipples to the chin (or topmost point along the contralateral symmetry line) and

the torso width as predictor of the size. The rationale behind this estimate is derived

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. PROCESSING ARCHITECTURE 72

from anthropometric studies of breast measurements [148] [149]. All edge components
whose centroid was more than F' X ¢ away from the centre of mass were removed,
where o is the standard deviation of the centroid of all edge components.

Finally, the smallest convex region enclosing the remaining edges was sought and
the ellipse that best fitted its contour was chosen as the most likely breast area. The
ellipse fitting algorithm was taken from Halir and Flusser [150]. The same procedure

was repeated for both sides.

3.4 Identification of Anatomical Landmarks

In this thesis, the interesting landmark points are the surface anatomical interest
points on the contour of the body regions. As discussed in section 2.1.2, most medical
IR images have a rather narrow range, have little characteristic texture and generally
do not reveal anatomical details. This is in contrast to other medical imaging modal-
ities and makes the detection of landmarks challenging and unreliable, if one looks at
the distribution of intensity values only. In addition, there is a wide inter-subject vari-
ation when looking at the absolute temperature distribution. For example, a smooth
variation of temperature on one IR image of the back might indicate the location of
the spine but may also indicate some abnormal temperature elevation or be similar to
other thermal patterns on the back that do not correspond to anatomical information
but rather correspond to physiological phenomena. As a result, relying on landmarks
within the body region can lead to false detection and poor segmentation of the in-
ternal anatomical structures of interest. One should mention the notable exception
of IR face images, where the difference of temperatures from various key features of

the face allows the identification of key regions such as the eyes, nostrils and corners
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of the mouth [151].

In view of the issues mentioned above, several assumptions need to be made in
order to obtain a robust and reliable landmark detection. First, the landmarks should
be restricted to the ones found on the outside contour of the body region, since they
follow the shape of the body region and are unlikely to be missing, except in the
special case of extremities. This in turn assumes that the contour was previously
extracted via a segmentation step and that the contour was well recovered. Second,
the landmarks found along the contour should be readily detectable on all images.
This suggests limiting the landmarks to a few key stable surface landmarks. Anthro-
pometric landmark points are such points, as they have been shown to be a stable set
of points in all human beings [61]. Anthropometric landmark points are landmark
points that are used for the measurement of human individuals and assess human
physical variation. This latter assumption is an issue for many “blind” interest point
detectors as they often produce a lot of false positives to avoid missing important
feature points. This is made worse by the smoothness of the contour curves we are
faced with, which mean detectors that require a threshold on the maximum angle
detected will likely produce many more false positives.

Our approach addresses all these issues. It relies on the calculation of the direct
curvature of contours but introduces a measure of symmetry to constrain the search
for high-curvature points and limits the number of landmarks identified. Symmetry
is an important visual tool that helps our visual system in its recognition task. It is
also ubiquitous in a lot of natural objects and is prevalent in the human body. Using
the symmetry or pseudo-symmetry of contours can help identify landmark points

correctly.
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The proposed algorithm assumes that a single well segmented object is present
in the image. The segmented object is binarized and its contour is extracted using a
simple subtraction with an eroded version of itself using:( i % %) as structural element,.
As this stage it is also assumed that there is some a priori knowledge about the
symmetry of the object, either through expert input or through the use of a symmetry
finding algorithm. The choice of the algorithm is not important as long as the main
axes of symmetry are found. In the following, axes of symmetry were found using
an implementation of the fast reflectional symmetry detection algorithm based on

orientation histograms proposed by Sun and Si [152].

3.4.1 Stage 1: Curvature Analysis of Entire Contour

The first part of our approach relies on a curvature analysis of the contour of the
object. Note that a good corner detector algorithm could be substituted at this
stage, although tﬁese tend to produce a very high number of false positives when
dealing with very smooth curves, which is the case for IR images of body regions.
First the contour coordinates are extracted in an anticlockwise manner starting
from the leftmost extremum of the contour and following the curve until back at the
original point, or until reaching a border or the end of a contour. The resulting curve
is then fitted with a cubic smoothing spline - a smooth piecewise third-order polyno-
mial function - thereby approximately interpolating and smoothing the curve. This
facilitates the subsequent differential calculations on the curve since the differentia-

tion of a polynomial function is trivial. The spline fitting is achieved by minimizing
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the following objective function:

£ (t)
dt?

mm (pZ]x GNP+ p)/ du) (3.11)

where p is a smoothing parameter, (z(t)) is the parameterization of the  coordinates
of the contour and f is the spline function. The first term in (3.11) represents the
goodness-of-fit in the least square sense to the data while the second term represent
the smoothness of the resulting spline function. The smoothing parameter allows one
‘to weigh both terms so that a trade off is achieved between closeness of the fit and
desired smoothness of the function. A value of p close to 1 means that the spline
interpolates the curve, while a value of p close to zero will give a smooth estimate
of the curve. Spline functions are simple yet powerful to represent, approximate and
manipulate complex curves and contours [153]. In general, the smoothing parameter
for the fitting of the spline depends on the complexity of the contour analyzed and the
amount of noise present in the image, which could create artifacts along the contour,
thereby returning false landmark points. Measure of the complexity of a contour can
be approximated with the square root of the isoperimetric ratio p = % [154]
for instance. However, for medical IR images, the contours are usually very smooth
and therefore the second term in Eq. (3.11) does not play a significant role until the
smoothing parameter is very small. This will be slightly different when considering
the difference of contours in the next section.

Once the contour curve has been estimated, its curvature is calculated using:

o Lfy _ dy o Lo
=4 . (3.12)
2

((%)QJF (%))
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where f, and f, are the spline functions corresponding to the z and y coordinates
of the contour respectively. The curvature is then normalized and a peak searching
routine is performed to look for the extrema of the normalized curvature, with a
threshold on the minimum peak value and a minimum distance between peaks. The
threshold for minimum peak value was determined by specifying the percentile of the
distribution of curvature peaks rather than an absolute threshold on the curvature
values. The choice of percentile is not as dependent on the image. The minimum
distance between peaks is a threshold that depends on the smoothness of the curve and
the scale of the object (size and distance from the camera for instance). It should
typically be relatively small (< 10 pixels in our case) to avoid missing important
features of the contour but not too small either to avoid catching irrelevant curvature
changes (> 3 pixels). The resulting peaks give the location of the extrema of the

curvature, corresponding to potential points of interest.

3.4.2 Stage 2: Analysis of the Distance Between Symmetric

Contours

One of the limitations of the first stage is the variability in the landmark points
returned when only slight modification of the object occurs. This can be a significant
issue when dealing with the contour of body regions, because the curvature at a
specific location might vary significantly depending on the pose and orientation of

these regions. For instance, using the curvature of the contour curve itself typically

misses the lateral epicondyle (bottom elbow), which has a more subtle curve than
the medial (top elbow), and also tend to miss the radial or ulnar styloid landmarks

when the wrist is bent at a large angle with the arm. However, if one looks at the
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distance between the top and bottom contours of the arm and wrist, the influence
of the angle between the wrist and the arm becomes far less significant, allowing
the recovery of the styloid landmarks. Therefore, the second stage of our approach
consists of a curvature analysis similar to the first stage but this time on the distance
curve between symmetric contours. Here the distance curve refers to the pixel-by-
pixel distance between two symmetric contour curves, which is itself a curve. This
assumes that the contour of the region exhibits near axial symmetry and it makes
use of the symmetry of that shape to restrict the number of key points detected and
therefore the number of non-significant landmarks.

The object is first rotated so that its axis of symmetry is horizontal. The pixel-
wise distance between the top and bottom contours (top and bottom with respect to
the now horizontal symmetry line) is calculated, yielding a new curve showing the
evolution of the distance between the two contours. This process is schematically
described in Fig. 3.6. If the contour of the object has some concave portions per-
pendicular to the axis of symmetry, for instance a horizontal arrow shape, then these
parts have to be treated separately. The resulting difference curve will then consist
of several distinct parts that can be processed iteratively to find the landmarks on
each portion. A cubic smoothing spline is then fitted to the difference contour curve

and the high curvature points are extracted in the manner described in 3.4.1.

3.4.3 Stage 3: Region Specific Constraints

The two previous methods are quite general and will produce important points along
the curve that may not correspond to any significant anatomical details. In order to

sort through them, one can look for specific location on the curves and its first- and
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Figure 3.6: Example of a distance curve (in red) from the top and bottom contour of an
arm (in bold white). The green lines show some of the salient point of the
distance curve and their corresponding locations on the arm.

second-order derivatives. For instance, given a smooth approximation of the difference
of contours from an arm, the styloid (wrist junction) and epicondyle (elbow junctions)
were consistently found as the first and last zeros of the smoothed difference curve
with positive curvature. These “bottlenecks” in the arm correspond anatomically to
the ends of the humeral bone and are easy to spot for a human observer. Similarly, the

base of the neck and the shoulder tip on images of the back consistently corresponds to
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the highest and second highest curvature points respectively on the difference contour
curve. For the hand, a high number of high-curvature points may be found by the
curvature analysis, especially for the fingers. A quick way to sort through these can

be done using the following algorithm:

1. The smallest convex polygon that encloses the entire hand is found and all the
binary regions within that polygon that do not belong to the hand are extracted.
On most images, this results in 6 distinct regions, 4 regions between the fingers
and 2 outside regions. See Fig. 3.7 for an example. A small opening operation

is performed to ensure that the regions are not attached to each other.

2. The image is rotated so that the main direction of the hand is horizontal.
The location of the extrema points of each of these 6 regions is found and the
rightmost (or leftmost depending on the direction of the hand) extremum point
is kept for each region. The remaining extrema points are sorted with respect
to their horizontal (x-axis) location. The first four points typically correspond

to the junction between the palm and the fingers. See Fig. 3.7 for an example.

3. The fingertips are extracted in a similar way using the extrema points of the

smallest convex polygon enclosing the hand.

This enables a coarse-to-fine approach to finding the fingertips, where a coarse
estimate of the tip is obtained through the maxima of the convex region and a fine local
search is then performed on the local curvature, thus preventing multiple landmark

points to represent the end of the fingers.
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a) Fingertip markers from Convex Hull ) Between fingers markers
(c) All markers on rotated image (d) All markers on original image

Figure 3.7: Steps showing the extraction of anatomical landmarks for a hand. The final
landmarks are shown in red.
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3.4.4 Summary of Landmark Detection Approach

For nearly symmetrical regions, the three previous stages are performed in parallel
and combined, using a multi-step clustering process. First the landmarks produced by
the first two curvature analysis stages are clustered, based on the Euclidean distance
between centroids. An estimate of the location of the landmarks sought is given by
the region specific constrr;Lints. Clusters are retained if they either match the region
specific constraints or if they contain more than a set number of high-curvature points.
Clusters remaining are then finally pair-matched with their symmetrical counterpart
and isolated (non-paired) clusters are discarded. The centroids of these remaining
clusters give the location of the landmarks sought. This coarse-to-fine approach im-
proves the localization of the landmarks of interest.

Once the points corresponding to stable anthropometric landmarks have been
found, additional landmarks can be derived, including interior landmark points. Most
anatomical regions can be inferred from only a few key landmarks, using anatomical

templates or atlases and simple affine transform.

3.5 Extraction of Anatomical Regions from Key
Landmarks

In this section, some examples of extraction of anatomical regions are described for
the arms, hands and back regions. All the anatomical regions presented are superficial
anatomical structures from the musculoskeletal system primarily. The key landmarks
for these regions consist of bony landmarks that are not affected by interpersonal

variability very much. In this case, it is possible to use anatomical templates for the
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extraction of muscle anatomy since muscle structure is linked to the bone structure
at least at their origin and insertion points. As a result, if the landmarks detected
correspond to bony structures, it is reasonable to assume from a biomechanical point
of view that the shape and location of the muscles will follow proportionally the
location and distance between bony landmarks. As a result, a simple affine transform
should be able to match anatomical template regions to a region in a given image.
Figs. 3.8, 3.9, 3.10, 3.11 and 3.12 show examples of anatomical ROI extraction
on the arms. Note that once the key landmarks are identified, other divisions are

possible than the ones shown. They can be similarly implemented.

Extensor carpi ulnaris
Extensor carpi radialis brevis
Extensor digitorum

Extensor pollicis brevis and longus
Extensor indicis

Extensor Carpi Radialis Longus

Flexor carpi radialis

Figure 3.8: Anatomical dorsal view of the superficial muscles of the upper-arm.

Thermal images of the back can also be divided into anatomical segments, for in-
stance areas of the skin originating from the same nerve root. An example of extrac-

tion of ROIs approximately corresponding to dermatomes is shown in Fig. 3.12(b).
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(a) Dorsal view, right arm superficial muscles  (b) Dorsal view, left arm superficial muscles
Figure 3.9: Example of ROI extraction of the dorsal superficial muscles of the upper-arm

(a: right arm; b: left arm). The key landmarks are shown as cyan-coloured
markers.

Thenar muscles of the thumb

Extensor carpi radialis longus

Brachioradialis
Pronator quadratus

Lumbrical muscles

Flexor muscles

Figure 3.10: Anatomical anterior view of the superficial muscles of the upper-arm.
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(a) Anterior view, right arm superficial muscles (b) Anterior view, left arm superficial muscles

Figure 3.11: Example of ROI extraction of the anterior superficial muscles of the upper-
arm (a: right arm; b: left arm). The key landmarks are shown as cyan-
coloured markers.

(a) Palmar view, right hand (b) Back dermatomes

Figure 3.12: Example of ROI extraction of the superficial muscles of the hand and back
(a: palmar view, right hand; b: Back dermatomes with separate region for
the spine)Anatomical landmarks used are shown in cyan-coloured markers.
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3.6 Determination of Potential Anomalous
Regions of Interest

This section discusses the strategies used when no specific information is available
about the potential anomalies to be detected. Two parallel approaches are used
to highlight “interesting” parts of the region. This helps ensure that the clusters
produced are not artificial clusters created by the method used but real salient areas.
The first approach uses some well known feature detectors that were combined by
Privitera and Stark to define visual regions of interest in natural images [78]. They are
normalized global contrast, entropy filter, Laplacian of Gaussian and Sobel operators.
Each of them has been shown to correlate somewhat with human vision and the way
we identify ROIs in images.

‘The normalized global contrast is defined as:

| Lnhood(t, ) — Lium|

LA(Z,J) B (thood(iaj) + LIM) (313)

where Lnnood(%, 7) is the local contrast within neighborhood nhood of pixel (i, 7), Ly
is the mean intensity of the image.

The entropy filter is the local entropy of an image defined as:

LocEntA(i, j) = — Z Dn log(py) (3.14)

nenhood

where p, is the relative frequency of gray-level n.
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The laplacian of Gaussian filtered image is defined as:

242
(B+12—20%)e 22

2452
_l1+l2

w08y, Doy, €

LoGA =

x A (3.15)

where [, I are the lengths of the 2D filter. In this thesis, I; = l,. ¢ is the standard
deviation of the Gaussian, * is the convolution operation and A is the image.

The Sobel operator is the following edge operator:
SobA =S ST x A (3.16)

where S = ((i) é (i)) is the Sobel filter, ST is the tranpose of S and A is the image.
Each filter is applied to the image, and the resulting image intensity is normalized.
Then the resulting four feature enhanced images are linearly combined to produce the

final feature image F'A:
FA=wv, x LA+ vy X LocEntA + v3 X LoGA + v4 X SobA (3.17)

where the ’Ui'S. are the weights assigned to each feature image. The choice of weights
is very much application dependent. In this thesis, the weights were all set to 1. As
a result, no emphasis was put on one particular type of feature.

The resulting four feature enhanced images were linearly combined. Different
weights can be allocated to each filter, depending on the features to be enhanced.
Contrary to Privitera and Stark’s approach, single centroid locations corresponding
to visual ROIs were not sufficient. Instead the entire ROIs is needed. Instead of

clustering the local maxima of the feature image, the feature image was thresholded
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at 90% of the estimated cumulative density function (from the histogram of the feature
image). Finally, a majority morphological operation was applied to the binary mask
resulting from the thresholding operation, in order to eliminate tiny clusters. The
size of the local neighborhood was 3 x 3. This resulted in well localized clusters of
interest that corresponded to areas of higher or lower intensity than the rest of the
image.

The unsupervised clustering procedure was performed on the body region directly.
An ART network was used to segment the region into clusters of interest. Recall that
ART networks attempt to create stable memories from inputs using match-based
learning [119] [155]. This lead to either a resonant state that triggers stable learning
of the candidate pattern or to a self-regulating parallel memory search [156]. If
the search ends by selecting an existing class, then the class’ center is refined to
reflect new information from the input patter. If the search ends by selecting a
previously untrained node, then learning of a new category takes place. ART neural
networks consist schematically of two layers, the layer of class centers and a layer
that receives the input data, feedback from each class and a time-varying bias signal.
The comparison between the signal from the feedback connections and the inputs is
thresholded with a parameter called vigilance that determines whether to assign the
input to an existing class or to create a new one. The convergence of the feedback
connections over time is called a resonance. ART networks do not require the setting
of the number of classes a priori, which was desirable for our problem. Here, a class
can contain several disjoint clusters of interest that share the same pixel intensity
characeteristics.

A special implementation of ART networks called Fuzzy ART was used. Fuzzy
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ART networks are essentially similar to ART1 networks but are meant for analog
instead of binary inputs and use fuzzy set theory operation to compute the categories,
the mratch criterion and in the learning phase. Fuzzy ART implementation uses fast
learning, a slow rate of forgetting and complement coding. In fast learning, the
network weights fully converge to a stable state values for each input pattern, enabling
the network to adpat quickly to rare inputs. On the other hand, slow forgetting rate
ensures that only persistent changes are taken into account. Finally complement
coding is a normalization procedure that accounts for both critically present and
critically absent features thereby limiting the proliferation of unnecessary classes.
The clusters of interest from both feature operators and ART clustering are merged
together through an AND operation. This step ensures that only the most relevant

clusters are kept.
3.7 Choice of Features

The following features are computed for all regions of interest (including whole
image, clusters of interest and anatomical regions):
e First-order statistics: Mean, standard deviation, skewness, kurtosis, minimum,

maximum, area.
e Entropy measures: Shannon entropy and log-entropy.

e Moments: Hu’s moment invariants (7 moments), Maitra’s moment invariants
(6 moments), Zernike moments (12th order, 47 moments) (See appendix B for

the definition of the moments).

e Multiscale features: wavelet features based on the square sum of wavelet coef-
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Table 3.1: Summary of features. X (i) stands for a column-wise vector representation of

an image
Feature Definition
Mean p=1/(N)x 3V X(4)
Standard deviation o= \/1/(N —1) x ZfV(X(z) — u)?
skewness y=E(X -p)3/o?
kurtosis y=E(X —u)*/c*
minimum
maximum
area > X (%)
Shannon entropy Entg, = -, s?log(s?)
Log-entropy LogEnt =", log(s?)
Hu’s moment invariants see appendix B
Maitra’s moment invariants see appendix B
Zernike moments see appendix B
Wavelet features for level i, detail j, wf = 1/N 307, lwi;(k)|

ficients from a (7,9) biorthogonal spline wavelet decomposition with 3 levels of

decomposition (for the whole image only).

The features are summarized in Table 3.1. The selection of relevant features depends
on the application and the body regions considered. In addition to the previous
features, difference statistics are computed if necessary, for example when one is in-
terested in comparing the degree of asymmetry between two contralateral regions of
the body or one hand with the other hand. Shape information is extracted from clus-
ters of interest, that is the centroid of the cluster, the eccentricity and orientation of
the ellipse with an equivalent second moment, the perimeter and finally the diameter

of the best fitting circle enclosing the cluster.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. PROCESSING ARCHITECTURE 90
3.8 Summary of Proposed Approaches

In this chapter, we introduced the following new segmentation approaches:
e A segmentation approach called cued morphological processing of edge maps,
that uses a minimum amount of a priori information about the region to con-

strain the morphological processing of edge components.

o A segmentation approach based on the classification of edge components by
a Support Vector Machine classifier and a Multilayer Perceptron. The classi-
fiers are trained on a database of features characteristic of edge components

belonging to the contour of the object of interest.

e A fusion strategy that combines the CMpEm, SVM and ANN classification of
edge components, a thresholding and a FCM clustering algorithm in order to
increase the overall segmentation performaﬁce. Several fusion strategies were
described. In particular, a fusion method based on the morphological post-
processing of combined segmented contours and on a set of rules derived from

the agreement between each individual method was introduced.

Each proposed segmentation method (CMpEm, SVM and ANN) are tested and com-
pared with each other and with an optimal thresholding method, & FCM approach
that uses neigbhorhood information and a level set active contour method. The tests
are carried on a synthetic database and on several databases of IR images. Similarly,
the fusion approach proposed are compared to a majority voting with binary weights
and a Bayesian fusion scheme, on several databases of IR images.

A new approach based on morphological processing of the edge components, the

edge density and an ellipse fitting was also introduced to deal with the special case
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of the segmentation of breast thermogramé. This approach are compared with that
of Qi et al.

A new approach was described to identify anatomical regions of interests in in-
frared images using automatically found landmarks. This approach is based on cur-
vature analysis of the region contour, a curvature analysis of the distance between
contours for symmetrical regions, and region specific constraints to produce clusters
of potential locations for anatomical landmarks. It is able to locate accurately key
anatomical landmarks on the contours. A comparison with several common land-
mark point detectors are performed in chapter 6, including a Harris corner detector,
a curvature scale-space approach and a phase-congruency based method.

A technique for extracting anatomical regions from anatomical landmarks on IR
images was also proposed. It is based on the small number of key landmark points
extracted as described previously and a simple affine transform that allows one to
recover similar regions in different images. Examples and results are presented in
chapter 7.

Finally an approach was presented that enabled one to identify potentially abnor-
mal Regions of Interest (ROIs) by using a combination of ART clustering algorithm
and a fusion of feature images to highlight regions that differ from their surroundings.

Applications and results of this approach will be presented in Section 6.3 of chapter 6.
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Chapter 4

Data Collection

This section presents the IR equipment used in this work as well as the data that was

collected from three different potential applications.

4.1 Infrared Technology

A majority of the IR images collected was acquired with a third-generation Thermo-
vision 320M IR camera from FLIR Systems Inc. The camera used can be seen in Fig.
4.1(a). This infrared camera uses a solid state uncooled microbolometer Focal Plane
Array (FPA) of 320 x 420 pixels, operating in the window 7.5um — 13um of the far
IR range of the electromagnetic spectrum. It has a 24 mm germanium lens with an
anti-reflective coating. This gives a 24° x 18° field of view with a minimum focus
distance of 50 cm. Its spatial resolution is 1.3 mrad, which means that at a distance
of 1m, each pixel represents a square of 1.3 mm X 1.3mm. Its thermal resolution is
0.07°C at 30°C. The camera was connected to a laptop via a PC-Card interface,

thereby allowing one to capture sequences of 14 — bit digital thermal images at a
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(a) Thermovision 320 (b) Omega

(c) AGA 680M (d) Thermovision A40M

Figure 4.1: Three infrared cameras used to acquire the data.
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maximum speed of 30 fps (frames per seconds).

Images were recorded in FLIR Systems Inc. proprietary format (“.seq” for se-
quences and “.img” for images) using FLIR Thermacam Researcher software and
subsequently exported in Matlab as a “.mat” array containing the temperature at
each pixel of the image and information about the environmental conditions, such as
the room temperature, maximum range of temperatures for each image, etc.

This IR camera is a radiometric thermal camera and therefore produces emissiv-
ity measurements that is later converted to absolute temperature measurements by
means of the Thermacam Researcher software. The user must input some additional
information about the object and general environmental conditions in order for the
final temperature reported to represent the actual absolute temperature of the object.
These parameters include an estimate of the object emissivity, for instance 0.98 for
the skin, the temperature of the background and the ambient temperature. There
are emissivity tables for most materials and the temperatures can be measured with
a digital thermometer for example.

Three other cameras were used to acquire some of the images in the databases.
The first one is a FLIR Systems Inc. Indigo Omega thermal imager camera. The
Omega camera is shown in figure 4.1(b). It uses a 164x120 microbolometer FPA with
an 18 mm lens giving a field of view of 25° x 19° and a minimum focus distance of
30 cm. The spatial resolution is 2.7 mreid, which means that at a distance of 1 m, each
pixel represents a square of 2.7mm X 2.7mm. Its thermal resolution is 0.085°C at
20°C. The Omega thermal imager is not a radiometric camera and is not capable
of outputting absolute temperature measurements. The thermal images produced by

this camera were not used for temperature measurements for this thesis; it was used
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to test the image processing algorithms. This camera has the advantage of being
extremely small, roughly 10 cm long, and light, roughly 150 g. It has a frame rate of
30 fps.

The second camera is a first-generation AGA Thermovision 680 medical IR camera
system along with an AGA OSCAR recording and retrieval system. The camera used
can be seen in Fig. 4.1(c). This camera uses an Indium-Antimonide photovoltaic
sensor cooled with liquid nitrogen with a 53 mm lens giving a 25° x 25° field of view
and a minimum focus distance of 60 cm. Its thermal resolution is 0.1°C at 30°C and
its spatial resolution is 3.4 mrad, which means that at a distance of 1m, each pixel
represents a square of 3.4 mm x 3.4 mm. The thermal images produced are analog and
can be digitized to 8 — bit, 128 x 128 pixel images using the AGA OSCAR recording
system. Images are stored on tapes and can be transferred to a PC in ASCII format.
Temperature information is not available in the images as is, but can be recovered if
the camera settings used for the acquisition are known. The thermal sensitivity of
this camera is adequate, but the spatial resolution is poor and the size of camera,
as well as the fact that it is cooled with liquid nitrogen, makes it difficult to use
for the applications considered in this thesis. As a result, this camera was not used
for acquiring new data. It is included here since some image processing tests were
conducted on a database of IR images of pain patients and of patients from a breast
clinic that was acquired by Monique Frize and her team at the Pain Clinic of the
Moncton Hospital, Ménoton, New Brunswick, Canada, between 1981 and 1984, using
this camera.

The third one is an A40M Infrared Camera from FLIR Systems. The camera used

can be seen in Fig. 4.1(d). This IR camera uses a solid state uncooled microbolometer
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FPA of 320 x 420 pixels, operating in the window 7.5um — 13um of the far IR range of
the electromagnetic spectrum. It has a 24 mm germanium lens with an anti-reflective
coating. This gives a 24° x 18° field of view with a minimum focus distance of 30 cm.
Its spatial resolution is 1.3 mrad, which means that at a distance of 1m, each pixel
represents a square of 1.3 mm x 1.3 mm. Its thermal resolution is 0.05°C at 30°C.
The camera was connected to a laptop via a Firewire interface, thereby capturing
sequences of 14bit digital thermal images at a maximum speed of 60 fps (frames per
seconds). This camera was used to acquire most of the pianist database described in

section 4.3.1, where higher acquisition rate was necessary.

4.2 Infrared Backgrounds and Synthetic Images

IR backgrounds were acquired using a Thermovision 320M thermal IR camera
system (FLIR systems Inc.) connected to a laptop. They were used to have a basic
controlled environment for testing and comparing the segmentation algorithms. The
ambient temperature and relative humidity of the room were kept at 23 + 1°C and
40% =+ 2% respectively. A typical experimental setup is shown in Fig. 4.2. Note
that the subject was not present when acquiring the IR backgrounds. The camera
was placed 50 cm above a table covered with some black squares of felt that had an
emissivity close to 1. The squares were loosely overlapped to cover the entire table.
The overlapping border between two squares of felt could be seen on the resulting IR
images, which added to the difficulty of the segmentation task. Noise was created by
using a fan blowing air at the surface of the table at different speeds.

Synthetic images consisted of 6 ellipses representing a rough shape of a hand,

placed on different backgrounds. The contrast between object and background as
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Thermovision 320M
IR camera -

IR radiation
L

Controlledm

background

Figure 4.2: Experimental setup showing the imaging
of the hand of a subject.

well as the complexity and amount of noise could be changed as desired. An example
of a synthetic hand is shown in Fig. 4.3(a). The intensity of each region could be
varied as necessary. The default synthetic hand of Fig. 4.3(a) had uniform grey-
level intensity within each region. However, in order to test the performance of each
algorithm, noisy backgrounds were added to the default image, with varying contrast
and noise levels, and different levels of complexity of the background. The three

different backgrounds are shown in Figs. 4.3(b),(c) and (d) for fixed contrast ratios.

They are IR backgrounds acquired using the setup of Fig. 4.2, with no subject present.
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(a) Synthetic hand (b) Uniform, noisy background

(¢) Non-uniform, noisy background (d) Challenging, very noisy background

Figure 4.3: Synthetic hand and backgrounds used. a: example of a synthetic hand. We-
ber contrast ratio: 0.33. b: Synthetic hand on a noisy uniform infrared back-
ground (background 1). Weber contrast ratio: -0.81. c: Synthetic hand on a
more challenging background with a low level of noise (background 2). We-
ber contrast ratio: -0.81. d: Synthetic hand on a very noisy and challenging
background (background 3). Weber contrast ratio: -0.82.

4.3 Databases of Infrared Images

Databases of infrared images of subjects were created and are described below.
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4.3.1 Pianist Database

The Pianist Database consists of sequences of thermal IR images from 17 pianists.
The data was collected in two phases. The first series of images (9 pianists) consists of
images of various views of the hands, upper-arms, arms, neck and face of the subjects
taken before, during and after piano practice. The following protocol®’ was followed:
The pianists were asked to come 15 minutes prior to their regular practice time
wearing a sleeveless shirt to allow their body temperature to reach equilibrium with
the ambient temperature of the room, which was kept constant at around 23 degrees
Celsius. A first series of images of hands, arms, neck and face were taken, after
which subjects started playing the piano. Standard views were used for each region
of interest. Every 15 to 20 minutes, another series of images was taken until the end
of the practice, which could last from 30 minutes to 2 hours. The duration of the
practice was the same as the regular f)ractice time of each subject and they played
according to their level.

At the end of the practice, subjects were asked to wait 15 more minutes without
playing, after which a last series of images were taken. Each series of images during
the practice session took approximately 5 minutes. For each body region, we recorded
a series of 10 images on average to reduce the risk of erroneous measurements. Images
were recorded using the Thermovision 320M infrared camera from FLIR Systems Inc.

The second series of images (9 pianists, including 1 from the previous series) used
the same protocol except that IR image video sequences were taken during the playing
as well, which provided more precise temporal information about the local changes

of temperature.

1The protocol was approved by the Research Ethics Board of the University of Ottawa (file H
06-04-18)
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4.3.2 Computer User Database

The population considered for fhis project consisted of office workers (university staff,
faculty, etc) or university students (minimum age of 18 years old) who used a com-
puter regularly. Computer users are believed to be prone to several upper-extremity
disorders affecting the hands and wrists due to the repetitive nature of typing. The
population was divided into two groups after the data acquisition based on the pres-
ence or absence of symptoms of Repetitive Strain Injuries (RSI). The number of
subjects at the time of writing was 18. The protocol was as follows: The test session
was divided into several parts. First each participant was asked to complete a ques-
tionnaire and to show on a hand diagram the location of potential painful areas (see
Appendix A, section A.2.1). The questionnaire consisted of multiple choice questions
to assess the presence and severity of symptoms related to carpal tunnel syndrome
as well as other repetitive strain injuries. The hand diagram represented both sides
of the hands and forearms. Subjects would highlight the regions where symptoms
appeared (including pain, discomfort, numbness, tingling, and others). Additional

information was recorded, such as:
e Previous injuries to hands

e Sleep disorders

Smoking or drinking

e How much time spent at the computer and types of job on the computer

(straight input or editing, intellectual use, mixed use, binge work)

Most frequent use: mouse or keyboard?
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e Type of keyboard used
e Breaks

o Any other heavy work with hands (carpentry, gardening, musical instrument,

etc)

e Dominant hand

The second part of the test session was the thermographic imaging. Participants
were asked to follow the thermographic guidelines prior to the session to ensure ac-
curate imaging. In addition, the room temperature and humidity were controlled
and maintained within acceptable range (room temperature between 19°C — 22°C,
humidity between 50 — 70%). Participants removed any piece of clothing that was
on their forearm, wrist or hand and waited 15 minutes to allow for their skin tem-
perature to reach an equilibrium state. After 15 minutes, participants placed their
hands on a small table covered with a dark piece of fabric. Several thermal images
of their hands and wrists were taken, for each side (palmar and dorsal), using the
Thermovision 320M or the Indigo Omega infrared cameras from FLIR Systems Inc.
The images were taken continuously for one minute per side.

During the last part of the session, a series of simple short tests were performed

with each participant.

e Wrist flexion test: participants were asked to bend and flex their wrists and the

angle was measured and recorded for each direction.

e Finkelstein’s sign: each participant was asked to make a fist with the thumb
placed inside the palm. Then the researcher bent the participant’s hand laterally

(towards the fifth finger) and asked if it hurt.
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e Tinel’s sign: the participant’s wrist was tapped on lightly by the researcher

(over the nerve) to detect nerve irritability.

e Phalen’s sign: The participant was asked to hold the forearms vertically and to
allow both hands to drop into complete flexion at the wrist for approximately

one minute.

e Electromyography: Up to 8 surface electrodes were placed on the participant’s
skin to acquire necessary biological signals. Some conductive gel was applied
between the electrode and the skin to increase the quality of the signal recorded.

Participants were asked to contract their muscles.

e Nerve conduction study: Electroneurograms were collected using a specialized
data acquisition system. The system consisted of a stimulator, a photoelectric
stimulus isolation unit, electrodes, electrode leads, biological signal amplifiers,
an analog-to-digital converter, and a digital signal processing computer. Par-
ticipants were asked to remain still and they received an electrical stimulus.
The electrical stimulus was initially applied at the minimum level and slowly
increased, in order to ensure participants’ safety and comfort. Levels of elec-
trical stimulus required could cause a sensation similar to someone repeatedly

tapping the skin surface with the fingertip.

The overall session lasted approximately 60 minutes.

4.3.3 Foot Database

A small database of IR images of feet from two subjects was also acquired using

a Thermovision A40M IR camera. The images represented a variety of views of
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the foot and ankle. The imaging protocol previously described was not followed for
this database, in order to obtain more natural imaging conditions than in a clinical
setting. The background consisted of a hardwood floor with significant longitudinal
gaps, which created an uneven background when captured by the IR camera. Also,
the temperature equilibration period was not always respected, which resulted in

some significant temperature variations across the foot for some of the images.

4.3.4 Test Infrared Databases
4.3.4.1 Hand Infrared Database

IR images of hands were acquired using the experimental setup of Fig. 4.2. Test
subjects were asked to follow strict guidelines prior and during the imaging, as detailed

in [7]. The complete database of IR images of hands consisted of:

e 4108 images of hands from the piano database (right hand palmar and dorsal

views, left hand palmar and dorsal views)

e 1239 images of hands from the computer user database (right hand palmar and

dorsal views, left hand palmar and dorsal views)

For each view, from 10 to 30 images were taken at a frame rate between 3 to 12 fps.
As a result, for a particular subject, many images are very similar to each other. The
segmentation algorithms tested might perform better on some types of images than
on other types. This could bias the results towards algorithms that perform better
on an image with more frames per views. In order to draw a fair comparison between
the different segmentation algorithms to be tested, it was decided to choose only one

image per view. In other words, resulting images differed in their orientation, type of
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view, location of the hand etc. This yielded 273 distinct IR images, from the piano
database and 100 images from the computer user database.

In addition, for some of the results presented hereafter, the three types of back-
ground mentioned in Section 4.2 were linearly combined to the hand IR images by
varying the contrast level of background and base image. A total of 50 levels of
contrast between background and hand IR image were used for each background,
ranging from no background added to no hand IR image present (only background
present). The number of levels was chosen to ensure a good resolution when plotting
the performance curves and to avoid missing the break point at which methods tested
fail. This resulted in 150 test images per IR image of hand and a total of 55950 test
IR images (3 backgrounds x 50 contrast levels x (273 + 100) hand IR images). Note
that a similar procedure was used for the synthetic images, yielding a total of 150
synthetic images for each orientation.

Two examples of test images are shown in Fig. 4.4 with their original background.

Fig. 4.4 (a) is an IR image of a hand with a gradual decrease of temperature from

(a) Gradual temperature decrease (b) Overlapping temperatures

Figure 4.4: IR hand test images from the computer user database.
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the palm to the tip of the fingers. The temperature of the hand is never below that
of the background and the intensity across the hand is therefore always greater than
that of the background. The background itself is uniform in temperature. Fig. 4.4(b)
shows a greater decrease in temperature across the hand, which results in overlapping

intensity distribution between the background and the object.

4.3.4.2 Arm Infrared Database

The complete database of IR images of arms consisted of:

e 2853 images of arms from the pianist database (right arm anterior and dorsal

views, left arm anterior and dorsal views)

e 919 images of arms from the computer user database (right arm anterior and

dorsal views, left arm anterior and dorsal views)

Similar to the hand IR database described in the previous section, a sequence of
images was taken for each view, with similar images during the sequence. As a result,
238 distinct images were kept in total. Out of the 238 remaining images, 60 were

from the computer user database and 178 were from the pianist database.

4.3.4.3 Foot Infrared Database

This database consisted of 940 images of left and right feet in dorsal and side views and
various orientations with respect to the camera. Similar to the test hand databases
from Section 4.3.4.1, a sequence of images was taken over a brief period of time for
each view. For test purposes, redundant images were discarded and only distinct

views were retained. This resulted in 27 distinct thermal IR images.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. DATA COLLECTION 106

The original background on the feet images had a prominent parallel line pattern
with varying intensity that were expected to be difficult to segment. There were also
some phantom shapes of foot that were sometimes hard to differentiate from the actual
foot. This made the segmentation quite challenging and not directly comparable with
the simpler backgrounds of other databases tested. As a result, a third foot database
was tested that had the background removed manually and a uniform background
was used instead.

An example of original foot images are shown in Fig. 4.5.

(a) (b)

Figure 4.5: Examples of foot IR images with phantom foot (left) and regular line pattern
background (right).
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Chapter 5

Segmentation Results

This chapter presents results obtained from the segmentation approach.

5.1 Segmentation of Extremities

Each algorithm was tested on synthetic images and on real IR images of hands and
feet. The hands and feet were chosen because they are challenging body regions to
segment since their temperature distribution is the most variable and often overlap
with that of the background. The true segmented contour was easily retrieved from
the generated ellipses in the synthetic image case, thus providing ground truth seg-
mentation for testing and comparing the algorithms. For real IR images, a manual
segmentation was performed to obtain the ground truth results. Contours from all al-
gorithms under different scenarios were compared to the ground truth contours using

a modified Hausdorff distance:

Hy(A, B) — SNANB)+ (AN B)

N
2 x max(33(4), 5(B)) (5:1)

107
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Where A, B are binary images whose ON pixels correspond to the segmented contour,
A and B are dilated versions of A and B, respectively, using a 3 x 3 square structural
element, N is the logical AND operator and the sum is on all the ON pixels. Note
that the modified Hausdorff distance as expressed in 5.1 is in fact an inverse distance,
i.e., Hy(A, B) = 1 when the two contours defined by the ON pixels in images A and
B agree perfectly, and H;(A, B) = 0 when the two contours are totally disjoint. As
a result, the inverse distance H,; represents the percentage of agreement between two
contours. The decrease in contrast is measured by the Weber contrast ratio given by:

I-1
1

C’Weber = (52)

Where I and I, are the average intensity of the object and the background respectively.

5.1.1 Algorithms Tested and Parameters Used
5.1.1.1 FCM parameters

The modified FCM algorithm used 2 classes, an exponent of 2 for the partition matrix
and a 3x3 local neighbourhood. Larger neighbourhoods did not yield better perfor-
mance for the images tested. The FCM and thresholding method tend to produce
multiple regions when the contrast is lowered, which resulted in a péor performance
when compared to the ground truth segmented object. To improve on the perfor-
mance of the FCM and thresholding methods, a post-processing step was added to
retain one largest region [157]. Note that this may not be practical to implement and

may degrade the segmentation performance for small objects.
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5.1.1.2 Level-Set Active Contour

The level set active contour method impiemented was a multiscale approach, with
respect to the image, and a multiresolution approach, with respect to the active
contour. Resolutions of 4, 8, and 2 pixel(s) were used successively in order to produce
the final segmented contour. The starting resolution of 4 pixels was found adequate
for the initial growth of the contour with respect to the size of the hand or foot. The
resolution was then increased to get the main feature of the hand and then decreased
to the finer resolution trying to catch the fine details of the hand and recover the
fingers. One scale was found to be sufficient for our purpose and a maximum number
of 500 iterations per resolution allowed convergence in all cases. The initial seed
circular contour was placed within the object. Using multiple seeds within the object

as suggested by Zhou et al. did not improve the segmentation in our tests [52).

5.1.1.3 SVM and ANN Classification of Edge Components

Training of the C-SVC-based and ANN-based classifiers should ideally be performed
on a database containing both background edge components and edge components
from the contour of the object that needs to be segmented.

For the hand database, both classifiers were trained on 100 hand IR images from
the computer user database for segmentation of the hands, and tested on the 273
hand images from the pianist database. These databases are completely independent,
thereby ensuring that the testing results are reliable. The total number of training
patterns (edge components) extracted from the 100 training images was 13401.

The foot database was too small for reliably training ANN and SVM classifiers.

To remedy this issue, we assumed that edge components belonging to the contour of
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a foot were similar to that of a hand so that the trained classifiers from the hand
database could be used for this new type of data. An unexpected advantage of using
the hand database ANN and SVM classifiers was that we could test the generalization
capabilities of these classifiers to similar shapes.

For the C-SVC-based segmentation, the libsvimm C+4++4 implementation was used
(libsvm version 2.83) [158]. A grid search was performed to find the best parameters
C and # for a radial basis function kernel and C, v and d for a polynomial kernel,
using a 5-fold cross-validation on the RSI database, where each feature was first scaled
to [-1, 1]. The parameters C and 7 were constrained by 3 < log, C < 25 and —1 <
log, v < 15 respectively. The search for the degree d of the polynomial was constrained
to [2,10]. The step size for the grid was 1 initially. The optimal neighbourhood was
found and a finer search was then performed in that neighbourhood using a step size
of 0.5 and 0.1 successively. Further reduction in the step size did not yield significant
improvements in the overall classification rate on the training dataset. In addition, a
penalty weight was assigned to the negative patterns (edge components that do not
belong to the ground truth contour). The penalty weight was 40, based on the ratio
of positive to negative patterns in the training set.

The C-SVC classifier was then trained with the best parameters, which were
C = 2'? and v = 2°8 for the RBF kernel and C' = 21175, v =1 and d = 6 for the
polynomial kernel. The best classification rate on the training patterns was 98.73%
and 98.66% of correct classification for the RBF and polynomial kernels respectively.
The total number of patterns tested was 13401, including 340 positive patterns (be-
longing to the true contour) and 13061 negative patterns (not belonging to the true

contour).
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Table 5.1: Confusion matrix for the C-SVC classifier on the training database, for the
best polynomial kernel and the best RBF kernel. P1 and PO indicate predicted
outcomes (1 and 0 respectively). Pcl and Pc0 indicate actual outcomes.

(a) Polynomial kernel SVM confu-

sion matrix (b) RBF SVM confusion matrix
PolySVM | Pcl Pc0 RBFSVM | Pcl PcO

P1 1.32% | 0.02% P1 1.31% | 0.04%

PO 1.32% | 97.34% PO 1.23% | 97.43%

The confusion matrices reporting the number of true positives, true negatives, false
rpositives and false negatives, for the best C-SVC classifier on the training database
with both kernels are given in Table 5.1, where P1, PO correspond to the positive
and negative predicted patterns and Pcl, PcO correspond to the positive and nega-
tive actual patterns. The values are presented as percentage of the total number of
patterns.

From the confusion matrix, the specificity, sensitivity, predictive positive and neg-
ative value as well as correct classification rate can be estimated. For the best RBF
kernel they are: Specificity: 99.96%; sensitivity: 51.47%; positive predictive value:
97.22%; negative predictive value: 98.75% and correct classification rate: 98.73%. For
the best polynomial kernel, they are: Specificity: 99.97%; sensitivity: 50.00%; positive
predictive value: 98.15%; negative predictive value: 98.66% and correct classification
rate: 98.66%. The difference in performance on the traihing database between the
two kernels is not significant and in the rest of this chapter, only the results from the
RBF kernel SVM are reported when tested on real and synthetic databases.

For the training of the MLP-based classifier, the features across all patterns were
first normalized to lie between 0 and 1, then a PCA decomposition was performed

on the 13 normalized features and the principal components that contributed for
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less than 2% to the total variance of principal components were discarded. After
that step, only 6 feature principal components remained. The hand database was
randomly separated into a training set (80% of the database) and a test set (20%
of the database). After resampling, the total number of patterns in the training
set was 20785 (10336 positive patterns and 10449 negative patterns). The test set
was not resampled so that it kept the initial ratio of positive to negative patterns
(There were 68 positive patterns and 2612 negative patterns). The training was
performed using a Quasi-Newton optimization of weights with a Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) update of the weights. In addition, MacKay’s Bayesian
regularization was used with one regularization parameter for all the weights to avoid
over-fitting of the data. Determination of the best structure was achieved by varying
the number of hidden nodes from 1 to 50 and choosing the architecture yielding the
best performance. More specifically, for a given number of hidden nodes, the ANN
was trained on the training set and its performance assessed on the test set. The
average classification rate from the test set over 20 randomly initialized ANN with
the current number of hidden nodes was recorded and the optimal number of hidden
nodes was the one with the best average classification rate. The optimal number of
hidden nodes in our case was N = 46. The output of the MLP is a probability that a
given input edge component belongs to the ground truth contour. The final contour
consisted of probabilities greater than 0.5.

The confusion matrix for the best MLP architecture on the test set from the
training database is given in Table 5.2, where P1, PO correspond to the positive and
negative predicted patterns and Pcl, PcO correspond to the positive and negative

actual patterns.
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Table 5.2: Confusion matrix for the best MLP architecture (N, = 46) on the test set
from the training database. P1 and PO indicate predicted outcomes (1 and O
respectively). Pcl and Pc0 indicate actual outcomes.

ANN | Pcl PcO
P1 1.72% | 1.49%
PO 0.82% | 95.97%

The values are presented as percentage of the total number of patterns. From the
confusion matrix, the specificity, sensitivity, predictive positive and negative value as
well as correct classification rate can be estimated. They are as follows: Specificity:
98.47%; sensitivity: 67.65%; positive predictive value: 53.49%; negative predictive

value: 99.15% and correct classification rate: 97.69%.

5.1.1.4 Cued Morphological Processing of Edge Maps

The parameters used for the CMpEm approach are summarized in Table 5.3.

Table 5.3: Parameters used for CMpEm algorithm. *: The length of the line is estimated
from the size of the main region and the distance to other components; Typical
values are between 5 and 20; The angle is the orientation of the region(s).

Excluded border portion 7% of
Eccentricity threshold for line removal 0.9965
Radius of disk structural element when fill rate after | 2 to 5
flood filling is low
Radius of disk structural element for dilation for convex | 5
hull
Threshold on deviation of orientation from main region | +30°
Structural element for morphological closing adapted | line*

to region
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5.1.2 Results on Synthetic Images for Individual Methods

All methods were tested on synthetic images except the SVM and ANN classification
of edge components. This is because these two methods require a separate training
database in order to assess their real performance. In addition, the synthetic image
database of the hand used does not provide enough variability (even with the added
backgrounds) to test the performance of the SVM and ANN classifiers once trained.
Training and testing on a rotated, scaled version of the synthetic image database
yielded near perfect performance for both classification methods, which is certainly
not representative of their true performance on real images as we shall see in Section
5.1.3.

Figs. 5.1, 5.2 and 5.3 show the results obtained and how the CMpEm method
outperformed the other algorithms as the contrast was decreased and for simple and
more challenging backgrounds. The Hausdorff disfances are presented as a “percent-
age of agreement” between calculated and actual contours. An agreement of 90%
or above is considered good and resulting segmented regions can be used as is for
the next processing stage. Values between 60% and 90% indicate that most of the
object contour was recovered, although the extremities are usually lost and result-
ing segmented regions will require additional manual or automated post-processing
steps in order to be useful. Values lower than 60% represent very poor and failed
segmented objects. Our method outperformed the three other techniques in most
scenarios, when the contrast was decreased in noise-free and in noisy complex back-
grounds. The improvement in the ability to segment the object ranged between 2%
and 35% with respect to the contrast ratio [157].

When the noise level was low (Fig. 5.1), and the background was uniform, the
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Figure 5.1: Percentage of agreement with ground truth contour for decreasing
contrast level between region and background for a uniform noisy
background (background #1 from Fig. 4.3)
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Figure 5.2: Percentage of agreement with ground truth contour for decreasing
contrast level between region and background for a non-uniform noisy
background (background #2 from Fig. 4.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SEGMENTATION RESULTS 116

100 T T T T T T T

90 = NN e Active Contour [

Proposed Method

80 4
70 -1
Y
50
4

30

20

Percentage of agreement with ground truth contour

10

L S T s o o LN ]

e L Bty A e A et asasga s SIS LT

--------
-----------------------------------------------------

i i i i
3.74 -0.709 -0.841 -0.891 -0.917 -0.933 -0.943 -0.951 ~0.957 -0.962 -0.965
Decreasing constrast level

Figure 5.3: Percentage of agreement with ground truth contour for decreasing
contrast level between region and background for a non-uniform,
noisy and complex background (background #3 from Fig. 4.3)

four methods behaved well as long as the contrast was relatively high. The thresh-
old of 60% for acceptable segmentations was reached for a Weber contrast ratio of
—0.845 for the global thresholding and active contour method, —0.916 for the fuzzy
clustering method and -0.938 for theCMpEm method. For increased levels of noise
and complexity of the background, the difference of contrast at the 60% threshold in-
creased between our method and the three other ones, as can be seen on Fig. 5.2 and
Fig. 5.3. This is consistent with the design of the CMpEm algorithm, whose strength
1s in recovering contours when dealing with challenging backgrounds. This also ex-
plains the slight loss of percentage in contour agreement at high contrast between our
method and the other three.

The FCM and Otsu thresholding method tend to produce multiple regions when

the contrast is lowered, which resulted in a poor performance when compared to the
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ground truth segmented object. To improve on the performance of the FCM and
thresholding methods, a post-processing step was added to retain one largest region.
The results for synthetic images improved significantly as can be seen in Fig. 5.4,
5.5 and 5.6, although for real images and smaller objects, it may not be possible to
use this approach and the performance might degrade in those cases. Figs. 5.4, 5.5
and 5.6 show the results with the post-processing step. The CMpEm method still

outperformed the other algorithms.
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Figure 5.4: Agreement with ground truth contour for decreasing contrast be-
tween region and background, with uniform noisy background #1
from Fig. 4.3, and modified FCM algorithm with 2 clusters.

Fig. 5.7 show the segmentation results from the four algorithms, for a contrast
ratio of 0.58.

It is possible to improve further on the performance of the FCM algorithm by
varying the number of specified clusters. For example, choosing a number of clusters

of 3 instead of 2 and keeping only one largest segmented region yielded results similar
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Figure 5.5: Agreement with ground truth contour for decreasing contrast be-

tween region and background, with non-uniform noisy background
#2 from Fig. 4.3 and modified FCM algorithm with 2 clusters.
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Figure 5.6: Agreement with ground truth contour for decreasing contrast be-

tween region and background, with complex background #3 from
Fig. 4.3, and modified FCM algorithm with 2 clusters.
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(a) Otsu thresholding. (b) FCM.

(c) Cued morphological processing of edge map. {d) Active contour level set.

Figure 5.7: Example of segmented synthetic image from algorithms tested on background
#3. a: Otsu thresholding method (22.7% agreement with ground truth). b:
FCM method (32% agreement with ground truth). c¢: cued morphological
processing of edge map method (97.2% agreement with ground truth). d:
Active contour level set method (52.9% agreement with ground truth)

to the CMpEm for simple uniform and non-uniform noisy backgrounds, as can be
seen in Fig. 5.8 and Fig. 5.9. However, for more complex backgrounds, the CMpEm
algorithm still performed better as shown in Fig. 5.10. In addition, finding the opti-
mal number of clusters is not an easy task as can be seen on Fig. 5.8 at high contrast
ratios, where the modified FCM algorithm oscillates around 75% of contour agree-

ment as choosing 3 clusters forces the algorithm to separate some non-homogeneous
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regions as belonging to the object. Choosing the number of clusters adaptively and
in an unsupervised manner might yield better results for synthetic objects but is a
difficult problem for FCM algorithms on anything but simple images, and usually

increases the computational burden drastically.
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Figure 5.8: Agreement with ground truth contour for decreasing contrast be-
tween region and background, with uniform noisy background #1
from Fig. 4.3, and modified FCM algorithm with 3 clusters.

Some oscillations can also be noted at lower contrast ratios for the active contour
method on Figs. 5.1, 5.4, and 5.8. This happens when the active contour leaks
through holes in the contour of the object or when some regions of the background

are included with the object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SEGMENTATION RESULTS

100 e N T '
yre
)
80 - [ -
v
)
g 8 \‘ .
g LIS
hid | JEEN
270 vy _
g Vol
o> ' 1
£ 60 v 4
2 L I
g L
£ 50 - “ i .
g [
T
-g 40 vy
@ L
E (RS
] '
g 30 ’ 1 7
2 ' 1
& [ [
20 - 1 1 .
' 1
= = =Otsu ' y
10 Hrovveee FCM ‘ 1 .
== Active Contour ¥ 1 .
wecen Proposed Method N - i T N N T S i W R o g
0 T i 1 T 1 | 1 1
0.888 -0.685 -0.828 -0.881 -0.91 -0.927 =0.939 -0.947

-0.953 -0.958 -0.962
Decreasing constrast level

Figure 5.9: Agreement with ground truth contour for decreasing contrast be-

tween region and background, with uniform noisy background #2
from Fig. 4.3, and modified FCM algorithm with 3 clusters.
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Figure 5.10: Agreement with ground truth contour for decreasing contrast be-

tween region and background, with uniform noisy background #3
from Fig. 4.3, and modified FCM algorithm with 3 clusters.
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5.1.3 Results on Real Infrared Images

The Otsu thresholding, FCM, CMpEm, Active Contour Level Set (ACLS), ANN and
SVM classification of edge components were tested on real IR images of hands and
feet. Instead of showing multiple plots of the evolution of the modified Hausdorff
distance between computed and expected contours (as in Fig. 5.1), we summarized
the results over all backgrounds for each image using the following figure of merit P:

_ i L dil)

P 3x N

(5.3)

where N is the number of backgrounds (N = 50 in this thesis) and the d;’s are defined

as follows:
Hy(j) if He > C,
di(j) = (5.4)
0 if Hy, < C.
Hy,(7) is the modified Hausdorff distance for background i and contrast index j,
with Hy, < 1, C is a threshold on the Hausdorff distance. In order to simplify
notations, the image arguments A and B from Eq. 5.1 are omitted in Eq. 5.4. The
threshold C' was successively fixed at 0.7, 0.8 and 0.9 representing 70%, 80% and 90%
of agreement between contours, respectively. The figure of merit P effectively reports
the average amount of agreement between calculated anci ground truth contours for

all backgrounds and all contrast ratios, thus giving an idea of how well each algorithm

performs over a range of experimental conditions.
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Table 5.4: Confusion matrices for all segmentation techniques on the hand database. P1

and PO indicate predicted outcomes (1 and 0 respectively). Pcl and Pc0
indicate actual outcomes.

(a) ANN confusion matrix

(b) FCM confusion matrix

ANN | Pecl Pc0 FCM | Pecl Pc0
P1 | 1.09% | 0.11% P1 | 0.85% | 0.36%
PO |0.18% | 98.61% PO | 0.10% | 98.69%

(¢) Otsu confusion matrix (d) CMpEm confusion matrix
Otsu | Pcl PcO CMpEm | Pcl PcO
P1 |0.88% | 0.34% P1 1.10% | 0.11%
PO | 0.14% | 98.65% PO 0.12% | 98.68%
(e) SVM confusion matrix
SVM | Pecl PcO
P1 |1.02% | 0.19%
PO | 0.03% | 98.76%

5.1.3.1 Decision Fusion

The majority voting scheme with binary weights was implemented by doing a full
search on the 31 possible combinations of techniques. This is excluding the active
contour level set method, whose agreement with the FCM and Otsu thresholding
method is very high despite its high complexity. As a result, it was excluded from
the fusion process. The performance of each combination was assessed on our test
databases and the best combination overall for each percentage of agreement previ-
ously described was kept. The combination are referred to as COMM1, COMM?2 and
COMMS in the tables of results.

The Bayesian fusion framework was applied as described in Section 3.3.4. The
confusion matrices were determined for each original test databases and are reported
in tables 5.4 and 5.6.

Since the number of contour pixels is very low compared to that of the background
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pixels, it is hard to differentiate between the performance of each algorithm. The
results are therefore summarized in Table 5.5.

Table 5.5: Summary of confusion matrices results (hand database). SEN: Sensitity
(I'P/(TP+FN)); ACC: Accuracy ((TP+TN)/(TP+FN+FP+TN)); SPC:
Specificity (T'N/(FP+TN)); PPV: Positive predictive value (T'P/(T P+ F P));
NPYV: Negative predictive value (I'N/(T'N + FN)).

SEN ACC SPC PPV NPV
ANN | 85.66% | 99.70% | 99.88% | 90.49% | 99.81%
FCM | 89.57% | 99.54% | 99.64% | 70.53% | 99.90%
Otsu | 86.54% | 99.53% | 99.66% | 72.31% | 99.86%

CMpEm | 90.49% | 99.78% | 99.89% | 91.11% | 99.88%
SVM | 96.83% | 99.78% | 99.81% | 84.16% | 99.97%

Similarly for the foot database, tables 5.6 (a), (b), (c) and (d) show the confusion
matrices for all algorithms (except the ACLS method). Results are summarized in
Table 5.7.

The specificity, accuracy 7and negative predictive value in tables 5.5 and 5.7 are
artificially high due to the high proportion of the background class compared to the
contour class. Since we are most interested in the true positives, the sensitivity and
positive predictive values are the more interesting numbers to look at. In addition,
since the accuracy is high, the threshold o from Eq. 3.10 was set to a value close to
one (0.99 in all the following).

Table 5.8 gives the average agreement between calculated contours for both databases
(combined).

From Table 5.8, we see that the FCM and Otsu thresholding methods on average
return the same contour and including both methods in the fusion would be redun-
vdant. The Bayesian fusion of the remaining methods was performed using the values

from the confusion matrices according to the description given in Chapter 3, Section
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Table 5.6: Confusion matrices for all segmentation techniques on the foot database.P1 and
P indicate predicted outcomes (1 and O respectively). Pcl and Pc0 indicate
actual outcomes.

(a) ANN confusion matrix

(b) FCM confusion matrix

ANN | Pcl PcO FCM | Pecl PcO
P1 ]0.52% | 0.11% P1 |0.42% | 0.22%
PO | 0.55% | 98.81% PO | 0.12% | 99.24%

(c) Otsu confusion matrix (d) CMpEm confusion matrix
Otsu | Pcl PcO CMpEm | Pcl PcO

P1 }0.43% | 0.21% P1 0.57% | 0.07%
PO | 0.14% | 99.22% PO 0.04% | 99.32%

‘ (e) SVM confusion matrix

SVM | Pecl Pc0
P1 [0.39% | 0.25%
PO | 0.07% | 99.29%

Table 5.7: Summary of confusion matrices results (foot database). SEN: Sensitity
(I'P/(TP+FN)); ACC: Accuracy (I'P+TN)/(TP+FN+FP+TN)); SPC:
Specificity (I'N/(FP+TN)); PPV: Positive predictive value (TP/(TP+FP));

NPV: Negative predictive value (I'N/(T'N + FN)).

SEN ACC SPC PPV NPV
ANN | 48.46% | 99.22% | 99.88% | 81.92% | 99.44%
FCM | 77.67% | 99.66% | 99.78% | 65.72% | 99.88%
Otsu | 74.93% | 99.64% | 99.79% | 66.86% | 99.86%
CMpEm | 94.09% | 99.90% | 99.93% | 89.61% | 99.96%
SVM | 84.00% | 99.68% | 99.75% | 60.85% | 99.93%

Table 5.8: Average agreement in terms of modified Hausdorff distance between methods.

ANN FCM Otsu | CMpEm | SVM
ANN 100% | 61.32% | 63.64% | 77.73% | 78.94%
FCM | 61.32% | 100% | 95.82% | 64.01% | 66.23%
Otsu | 63.64% | 95.82% | 100% | 66.10% | 68.46%
CMpEm | 77.73% | 64.01% | 66.10% | 100% | 79.56%
SVM | 78.94% | 66.23% | 68.46% | 79.56% | 100%
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3.3.4.

Finally, for the rule-based morphological fusion process, the algorithms were ranked
according to their positive predictive value from tables 5.5 and 5.7 and the algorithm
described in Chapter 3, Section 3.3.4 was used with the the following predetermined
agreement requirements: 90% for the agreement with algorithm 1 and 95% and 99%

for agreement with algorithm 2 and 3 respectively.

5.1.3.2 Tables of Results from Hand and Foot Databases

Figs. 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16 show results for both databases tested (hand
database and foot database). For each algorithm, two versions of the images were
segmented, the original one and the original with an artificial controlled background
added, as described previously. The results for the database with backgrounds added
show the combined results for all three types of background. These two test databases
are referred to in the next tables as HDB and FDBorig for the original databases
of hands and feet respectively, and HDBwB and FDBwB for the databases with
background added for hands and feet respectively. Note that the active contour level
set method was not tested on the databases with backgrounds added due to the
large amount of time it would have required. However, the performance for all other
methods degraded when IR backgrounds were added so it is expected that the active
contour level set method would have followed this trend and would still have been
outperformed by most of the other techniques tested.

Figs. 5.11, 5.12 and 5.13 summarize the segmentation results for the hand database.
For all figures, ACLS, OTSU, FCM, ANN and CMpEm refer to Otsu’s optimal global

thresholding,a modified Fuzzy C-Means clustering, Artificial Neural Network classi-
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fier and Support Vector Machine classifier, respectively, that were described in section
5.1.1. BF Fusion refers to the Bayesian Framework Fusion with o = 99% as explained

in 5.1.3.1. HDBwB refers to the hand database with backgrounds addeda and HDB

refers to the original hand database. Each figure represents the percentage of cor-

M HDBwB, 90%
m HDB, 90%

ACLS

oTsuU

FCM
ANN
SVM

BF Fusion
CMpEm

cCOMM 1

Fusion

T t ¥

0 10 20 30 40 50 60 70 80 90 100
Average percentage of contours a 90% agreement with ground truth contour

Figure 5.11: Hand database segmentation results at 90% agreement. Fusion:
fusion of ANN, SVM, CMpEm and Otsu; COMM]1: Best voting
committee (ANN+OTSU+CMpEm); .

rectly recovered contours for a given agreement level between calculated and ideal
contours. For example, the CMpEm method achieves a 90% agreement between the
contour produced and the actual contour for a little over 70% of all the images tested
from the original hand database. As the constraint on the quality of the segmented
contour is decreased, via the percentage of agreement with the actual contour, the
number of segmented contours meeting the quality criterion increases. For example,
the CMpEm achieves a 70% agreement between the contour produced and the actual

contour for close to 80% of all the images tested from the original hand database.
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Figure 5.12: Hand database segmentation results at 80% agreement. Fusion:

fusion of ANN, SVM, CMpEm and Otsu; COMM1I1: Best voting
committee (ANN+OTSU+CMpEm); BF Fusion: Bayesian Frame-
work Fusion (a = 99%).

FCM
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ANN
SVM
COMM 2
BF Fusion
CMpEm

Fusion

W HDBwB, 70%
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Average percentage of contours a 70% agreement with ground truth contour

Figure 5.13: Hand database segmentation results at 70% agreement. Fusion:

fusion of ANN, SVM, CMpEm and Otsu; COMM2: Best voting
committee (ANN+FCM+CMpEm+SVM); BF Fusion: Bayesian
Framework Fusion (a = 99%).
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The same testing method was applied on a database of infrared images of feet.
Results are presented in figures 5.14, 5.15 and 5.16. A missing bar indicates that the
algorithm was not tested for that particular database. For all figures, ACLS, OTSU,
FCM, ANN and CMpEm refer to Otsu’s optimal global thresholding,a modified Fuzzy
C-Means clustering, Artificial Neural Network classifier and Support Vector Machine
classifier, respectively, that were described in section 5.1.1. BF Fusion refers to the
Bayesian Framework Fusion with a = 99% as explained in 5.1.3.1. FDBwB refers to
the foot database with backgrounds added; FDBnB refers to the foot database with

background removed and FDBorig refers to the original foot database.

ACLS # FDBwB 90%
M FDBnB 90%
FCM
M FDBorig 90%

OTsU [

ANN [
CMpEm
svM .

Fusion

BF Fusion [

cOMM3

0 10 20 30 40 50 60 70 80 90 100
Average percentage of contours a 90% agreement with ground truth contour

Figure 5.14: Foot database segmentation results at 90% agreement. Fusion:
fusion of ANN, SVM, CMpEm and Otsu; COMMS3: Best voting
committee (ANN+Otsu+CMpEm+SVM).
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5.16: Foot database segmentation results at 70% agree-
ment. Fusion: fusion of ANN, SVM, CM-
pEm and Otsu; COMMS3: Best voting committee
(ANN+Otsu+CMpEm+SVM).

t owner. Further reproduction prohibited without permission.

130



CHAPTER 5. SEGMENTATION RESULTS 131

Figs. 5.17 and 5.18 show examples of segmented hands from the six basic algo-
rithms for two typically difficult images, where the temperature distributions of the
hand and background overlap and where the temperature distribution of the back-
ground is not necessarily uniform either. These are the original infrared images. The
green contour shows the ground truth segmentation while the red contour shows the
segmented region found by one of the algorithms tested.

Similarly for the foot database, figure 5.19 shows an example of segmented foot.

Finally, Fig. 5.20 shows an example of the improvement over individual algorithm

when using the rule-based morphological fusion.
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(a) Otsu. (b) FCM.

(¢) CMpEm. (d) ACLS.

(e) ANN. (f) SVM.

Figure 5.17: Example of segmented real IR image from all algorithms tested. a: Otsu
thresholding method (57.4% agreement with ground truth). b: FCM method
(50.8% agreement with ground truth). c: cued morphological processing of
edge map method (99.8% agreement with ground truth). d: Active contour
level set method (55.3% agreement with ground truth). e: ANN classifica-
tion of labelled edge components (99.8% of agreement between contour and
ground truth). f: SVM classification of labelled edge components (99.8% of
agreement between contour and ground truth)
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(a) Otsu. (b) FCM.

(¢) CMpEm. (d) ACLS.

(e) ANN. (f) SVM.

Figure 5.18: Example of segmented real IR image from all algorithms tested. a: Otsu
thresholding method (21.5% agreement with ground truth). b: FCM method
(20.2% agreement with ground truth). c: cued morphological processing of
edge map method (89.6% agreement with ground truth). d: Active contour
level set method (20.9% agreement with ground truth).e: ANN classifica-
tion of labelled edge components (72.8% of agreement between contour and
ground truth). f: SVM classification of labelled edge components (52% of
agreement between contour and ground truth).
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(a) Otsu. (b) FCM.

(c) CMpEm. (d) ACLS.

(e) ANN. (f) SVM.

Figure 5.19: Example of segmented real IR image from all algorithms tested. a: Otsu
thresholding method (52% agreement with ground truth). b: FCM method
(50% agreement with ground truth). c: cued morphological processing of
edge map method (68% agreement with ground truth). d: Active contour
level set method (51% agreement with ground truth). e: ANN classifica-
tion of labeled edge components segmentation method (77% of agreement
between contour and ground truth). f: SVM classification of labeled edge
components segmentation method (90% of agreement between contour and
ground truth).
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(a) Otsu. (b) FCM.

(c) CMpEm. (d) ANN.

(e) SVM. (f) Rule-based, morphological fusion.

Figure 5.20: Comparison of algorithms with one of the fusion technique (rule-based mor-
phological fusion).
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5.1.4 Discussion

From figures 5.11, 5.12, 5.13, 5.14, 5.15 and 5.16 three groups of algorithms emerge
based on their overall performance on the original hand database and the one with
backgrounds added. The group performing the worst overall is the one consisting
of Otsu thresholding, FCM clustering and active contour level set method. The
explanation for their poor performance is exemplified in figures 5.17, 5.18 and 5.19
where they give a region where the intensity is more or less uniform, missing out on
the regions where the intensity is close or less than that of the background. This is
expected from the Otsu thresholding method, since it uses a global albeit optimal
threshold for the entire image. In the case of the FCM algorithm, increasing the
number of clusters may in some cases produce better results but the optimal number of
clusters is hard to determine and regions whose intensities are too close to that of the
background still would not be recovered. For the active contour level set method, the
poor performance is in part due to the stopping criterion for the curve evolution, that
is hard to set for a wide range of images. Indeed, the evolution of the active contour
typically stops at boundary or edges and although it usually works well when small
gaps are present in the contour of the object, it typically fails when large portions of
the contour have weak or very weak edges. Adding edge orientation information as
constraints in the total energy constraining the active contour as suggested by [52]
works better with weak edges as long as the intensity of the object is mostly uniform.
However, if large intensity variations exist, it fails as well.

The second group of methods consist of the ANN and SVM classification of edge
components. The two classifiers work well when the noise level is low to medium and

the contrast is high to medium. However, the performance tends to degrade for noisy,
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low contrast images. This is p‘artially due to the dependence on the edge detection
process. If edge components from the contour are fused with edge components from
the background, the two classifiers are unable to recover the edge component parts
belonging to the contour.

Although both ANN and SVM classification of edge components require a well
labelled training database, the generalization capabilities of both methods was better
than expected. They were able to perform well on the foot databases although they
were trained on edge components from the training hand database only. For instance,
in figure 5.14, the SVM performed slightly better than the CMpEm approach on the
foot database with background removed and on the foot database with backgrounds
added. On the original foot database however, the CMpEm approach still performed
better. The explanation lies with the nature of the contours that were investigated.
Indeed, the classification is not done on the shape of the object itself, unless there
is only one single clean edge component for the entire contour, but on the edge
components that make up the contour. As such, edge components from the contour of
smooth objects are often similar. It means that given a more general training database
of smooth shapes that are not too dissimilar, the technique based on classification of
edge components will be flexible enough to be able to segment different shapes.

One major drawback of the ANN and SVM segmentation methods in addition to
the training required is their inability to produce a closed contour in many cases, which
means a post-processing step would be required in order for a landmark detection
scheme to be performed successfully. As a result, the two methods are perhaps better
used in a fusion scheme or in combination with other approaches.

The last group consists of the CMpEm method and the various fusion schemes.
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Overall, the CMpEm approach outperformed the approaches from the first two groups
and sometimes even fusion schemes. The difference is more noticeable in more difficult
cases such as in figures 5.18 and 5.19. The comparison of fusion approaches yielded
some interesting results. In most situations, the fusion approach based on agreement
rules and morphological processing performed the best out of all the other techniques.
The fusion approach based on a Bayesian framework and the weighted majority voting
fusion scheme performed globally the same. In most cases they also outperformed the
individual techniques, which was expected. Their lower performance with respect to
the rule-based morphological fusion scheme can be explained by the fact that they
mostly assume that all individual techniques to be combined are independent from
each other, which is not likely true in our case.

In terms of computational complexity, the least complex is the Otsu thresholding
method. The complexity of the FCM and CMpEm is roughly equivalent as well, for
a maximum number of iteration of 100 for the FCM clustering. The active contour
level set approach implemented is the most complex of the individual segmentation
techniques compared. The number of resolution levels, the number of scales used and
the allowed number of iterations all influence the amount of computations required.
However, the number of computations was on average two orders of magnitude greater
than that of FCM and CMpEm methods. Table 5.9 shows the average time required
to process an image, based on an average over 4800 images (300 images for the active

contour level set method).

5.2 Selected Results on Breast Segmentation

A precise determination of breast boundaries is not within the scope of this thesis
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Table 5.9: Average computation time in seconds based on an average over 4800 images
(300 for the active contour level set method). Computations were performed
on an Intel Centrino 1.66GHz Core Duo processor.

Method | Time (s)
ANN 1.323
FCM 1.953
Otsu 0.063

CMpEm | 2.203
SVM 1.363

ACLS 152.045

since the determination of the breast area is not well defined on IR images within
additional information (fiducial markers for instance). As a result, no ground truth
segmentation is provided in the following but rather qualitative results based on the
most probable area comprising the breasts.

Following the procedure outlined in Section 3.3.5, the inclusion factor was deter-
mined for each image using a linear combination of the normalized distances from
nipples to armpits, from nipples to chin and from the torso width. The coefficients
for the linear combination were estimated by regression analysis on 10 representative
breast images with different breast sizes and shapes. The resulting inclusion factors
ranged from 0.8 to 1.8, depending on the size of the breast.

Figs. 5.21 and 5.22 compare the results of a breast segmentation using the pro-
posed breast segmentation method versus Qi et al.’s method [35]. The first image
(Fig. 5.21).is from a first generation IR camera (AGA thermovision 680) and was
acquired by Monique Frize and her team at the Breast Clinic of the Moncton Hos-
pital, NB. The second image (Fig. 5.22) is from a second generation camera and

was acquired by Dr. Keyserlingk and his team at the Ville-Marie Breast Clinic in
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N

(a) Original Image (b) Canny edge detection, ¢ = 2.5
: .

gzoe o ST

(c) Canny edge detection, c =1  (d) Parabolic shape detection, ¢ =
2.5

(e) Parabolic shape detection, o = 1 (f) Our segmentation method

Figure 5.21: Segmentation result for a thermal image of the breasts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. SEGMENTATION RESULTS 141

(a) Original Image (b) Canny edge detection, o = 2.5

(¢) Parabolic shape detection for o = 2.5 (d) Our segmentation method

Figure 5.22: Segmentation result for a thermal image of the breasts.

Montreal, QC.

The edges returned by a Canny edge detector are shown as well. Qi et al. sug-
gested to use a value of o = 2.5 for the Gaussian function of the Canny edge detector.
Note that the edge components corresponding to the lower contours of the breast
have to be selected manually in Qi et al.’s method. The quality of the resulting seg-
mentation highly depends on the choice of ¢ as can be seen in figure 5.21. This is
problematic since the selection of o is not trivial and vary for different images. In ad-
dition, an improper choice of o makes the subsequent parabolic shape detection very
difficult, for instance when o = 1 in figure 5.21 where the number of edges produced

is significantly higher and choosing which edge component to fit with the parabolic
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shape is not trivial. Variations of o change the number and often the shapes of the
edge components produced, which in turn change significantly the contour produced
by the parabolic shape detection proposed by Qi et al., since the fitting is performed
on connected edge components. However, it does not affect our segmentation method
significantly, since the value of o was chosen adaptively by fixing the density of the
edge map instead.

Using a Hough transform for detecting the parabolic shape from the lower breast
contours, as proposed by Qi et al., was extremely slow. A much faster solution is to
use a fast least squares fitting algorithm to fit the parabola from the edges belonging
to the lower contour. Each pixel belonging to the edge component from the lower
contour is considered to be part of the parabolic curve and the best fitting parabola
is found using a least squares fitting algorithm. This was the method used in the
following figures. The increase in speed was of several order of magnitudes.

As can be seen, Qi et al.’s approach tends to overestimate the breast area and is
susceptible to the quality of the edge components returned. Our approach is more ro-
bust to the edge components returned although the automated choice of the inclusion

factor tends to underestimate the breast area in some cases.
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Chapter 6

Landmark Localization Results

This chapter presents results obtained from the ROI identification stage of our

proposed architecture.

6.1 Algorithms Tested and Parameters Used

The approach introduced in Section 3.4 was tested on a database of IR images of
the arms and hands. The approach was also tested on IR a few images of the back
that were acquired using the protocol described for the computer user database. The
smoothing parameter p in Eq. 3.11 for the spline fitting was set to 0.1. This choice
of parameter puts much emphasis on how smooth the spline has to be, as opposed to
how close it should fit the data points from the contours. The rationale for choosing
a small value for the smoothing parameter stems from the fact that although the
contour of most body regions are rather smooth, the imaging process as well as the
segmentation and contour extraction processes result in a spatial discretization that is

far from smooth. To avoid the pitfall of overfitting the binary contour discretization

143
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artifacts, it is necessary to choose a lower smoothing parameter. The smoothing
parameter may need to be adjusted depending on the type of object considered and
the imaging process used prior to the landmark identification.

The minimum peak height for the curvature was determined by the upper 35%
percentile of the distribution of high curvature points. This distribution is generated
from the normalized absolute value of the curvature plot. If the absolute normalized
curvature points are normally distributed, the 35% percentile would be approximately
equivalent to keeping a peak if it is more than a standard deviation away from the
mean peak value. Choosing a threshold adapted to the distribution of curvature peaks
is more robust than a global hard threshold on the peak height to different types of
contours that can be encountered depending on the body region or other object of
interest.

The minimum distance between peaks as well as the clustering distance for the
final stage were set to 5 pixels. This distance can be estimated from the distance
from the camera to the object and the approximate size of the object, which give an
idea of how close relevant anatomical features would be.

Our algorithm was compared to three different approaches used for landmark

point detection. These algorithms are:
e A Curvature Scale-Space (CSS) approach proposed by He et al. [69].

e A corner and edge detector based on phase congruency introduced by Kovesi [67].

e An improved version of the original corner detector from Harris et al. [65], using
a more precise calculation of the derivatives. This was proposed by Schmid et

al. [159].
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As described in Section 2.2.3, each method differs significantly in their approach to
extracting corners or high-curvature points. They have all been shown to outperform
other techniques from the literature and are a good representation of the state-of-
the-art for landmark extraction in 2D images [67,68,159]. As a result, they are
well-suited for comparison with our approach described in Section 3.4.

For each of the three methods tested, a number of parameters are required to
be set. For Kovesi’s phase congruency method, the default parameters were used,
based on the author’s own recommendations included in his code. The parameters
are listed in Table 6.1. Parameters for the curvature scale-space method is given in
Table 6.2 . Harris’ corner detector gave best results for a standard deviation of 1 for
the smoothing Gaussian. In addition, the search for landmarks was constrained to
the contour either explicitly for our approach and for the CSS method by providing
a perfect contour,. or implicitly for Kovesi’s phase congruency method and for the
Harris corner detector by discarding landmark points that were not on the contour.

In addition, Kovesi’s and Harris’ methods require an additional non-maxima sup-
pression step to extract the final landmark points. The radius of the region considered
in non-maxima suppression was set to 2 pixels and the threshold was varied until op-
timal results were obtained compared to the ground truth location of the landmark
points or until a cap on the number of landmark points was reached. In order to
enforce the cap in the case of the CSS method, the parameter C' in Table 6.2 was

varied. The angle 6 was kept at 180°, otherwise the anatomical landmark points of

interest were not detected consistently.
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Table 6.1: Parameters used for Kovesi’s phase congruency edge and corner detector.

Number of wavelet scales 4
Number of filter orientations 6
Wavelength of smallest scale filter 3
Scaling factor between successive filters 2.1

Ratio of the standard deviation of the Gaussian de- | 0.55
scribing the log Gabor filter’s transfer function in the
frequency domain to the filter centre frequency

Ratio of angular interval between filter orientations and | 1.2
the standard deviation of the angular Gaussian func-
tion used to construct filters in the freq. plane.

No of standard deviations of the noise energy beyond | 2
the mean at which we set the noise threshold point.
fractional measure of frequency spread below which | 0.5
phase congruency values get penalized.
Sharpness of the transition in the sigmoid function used | 10
to weight phase congruency for frequency spread.

Table 6.2: Parameters used for the curvature scale-space method.

C, Minimum ratio of major axis to minor axis of an | 1.5
ellipse, whose vertex could be detected as a corner by
proposed detector

6 Maximum obtuse angle that a corner can have when | 180
it is detected as a true corner
Standard deviation of the Gaussian filter when com- | 7
puting curvature

6.2 Landmark Localization Distance Results

Each algorithm was tested on 273 hands and 250 arms in various orientations,
from the piano database. Ground truth landmark points were manually extracted
by an experienced thermographer, with the help of anatomical and anthropometric
templates. They consisted of the radial and ulnar styloid (wrist junction), the finger-

tips, the interdigital web points (between fingers) and the humeral lateral and medial
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epicondyle. Results are compiled in Table 6.3. Values represent the mean distance (in
mm) to the ground truth landmarks. Values in bracket are the standard deviations
of ther distance. For non-specific algorithms such as CSS, phase congruency corner
detector and Harris corner detector, the distance was calculated to the landmark clos-
est to the sought location. This is advantageous to the other algorithms tested since
they tend to produce a great amount of landmark points for their best parameter
settings. As a result, we also show their performance when a maximum number of
landmarks is fixed. Iterative increase of the threshold in the non-maxima suppression
post-processing step was used to achieve the desired number of landmarks in that
case. Fixing the upper cap on the landmark points strictly to the specific landmark
points sought for the phase congruency, CSS and Harris detector fails because these
methods are intrisically non-specific in the type of landmark points they produce.
The upper cap was determined in such manner as to maximize the performance of all
algorithms while keeping close to the number of landmark points sought.

Overall our approach performs well compared to other methods tested, giving good
localization for all landmarks. The performance of the other algorithms is highly cor-
related to the number of landmark points returned. If the number of landmark points
is capped, their performance drops significantly. This suggests that their good per-
formance in a best parameter scenario is in fact due to the large number of landmarks
found, some of which are bound to be close to the ground truth landmarks. In other
words, their number of false positives is significantly higher than with our approach.
The proposed approach is also more robust with respect to the type and location of
landmark points as can be seen in Table 6.3 for the arm landmark points (humeral

epicondyle), which represents a very subtle change of curvature on an IR image of the
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Table 6.3: Mean distance (standard deviation) to ground truth landmarks (in mm) for
our approach and both versions of the three other algorithms tested. Legend
is as follows: Prop. Appr., proposed approach; CSS best: Curvature scale-
space (CSS) with best threshold values, 65 landmarks; CSS cap. (capped):
CSS with imposed number of landmarks fixed at 15; Phase cong. best: Kovesis
phase congruency with best threshold values, 100 landmarks; Phase cong. cap.:
Kovesis phase congruency with number of landmarks fixed at 20; Harris best:
Harris corner detector with best parameter values, 40 landmarks; Harris cap.:
Harris corner detector with number of landmarks fixed to 20 pts.

Anatomical Prop. | CSS | CSS | Phase Phase Harris | Harris
Landmark Appr. | Best | Cap. | cong. cong. Best | Cap.
Point (15) | Best | Cap. (20) (20)
Radial Styloid 7.2 4.5 | 21.7 2.5 8.4 12.5 20.3
(wrist) (6.4) | (4.5) | (20) | (2.1) (10) (20) (26)
Ulnar Styloid 5.4 3.6 | 22.5 2.2 6.3 4.9 11.5
(wrist) (5.1) | (3.1) | (20) | (1.5) (8.3) (11) (21)
Tip of 1st digit 4.8 2.6 2.2 2.5 16.9 16.8 19.8
(thumb) (2.6) | (1.5) | (1.4) | (2.4) (21) (23) (24)
Tip of 2nd digit 3.3 2.5 2.1 3.2 20.0 23.1 26.5
(index finger) (2.1)-| (1.6) | (1.5) | (5.4) (22) (30) (30)
Tip of 3rd digit 2.3 2.8 2.6 3.5 22.3 26.9 29.4
(middle finger) | (2.5) | (1.6) | (1.8) | (5.5) (23) (33) | (33)
Tip of 4th digit 4.3 2.7 | 2.3 2.9 19.7 24.4 26.0
(ring finger) (1.9) | (1.5) | (2.0) | (4.5) (22) (30) | (30)
Tip of 5th digit 5.0 2.1 1.8 2.2 11.5 16.5 17.5
(little finger) (2.8) | (1.4) | (1.3) | (1.4) (18) (23) (23)
Interdigital web 1 | 3.9 1.8 1.9 1.5 2.1 1.9 2.1
(1st-2nd digit) (7.2) | (1.3) | (3.8) | (0.9) (3.7) (2.2) | (3.8)
Interdigital web 2 | 2.7 2.2 2.4 1.7 2.3 2.2 2.2
(2nd-3rd digit) (5.1) | (2.3) | (2.6) | (1.8) (3.6) (1.6) | (1.6)
Interdigital web 3 | 3.1 2.7 2.7 1.7 2.4 2.1 2.1
(3rd-4th digit) (5.1) | (3.9) | (41) | (1.4) (3.6) (1.4) | (1.4)
Interdigital web 4 | 4.4 2.1 1.9 1.7 2.7 1.9 2.3
(4th-5th digit) (7.3) | (2.0) | (2.2) | (1.1) (4.9) (1.1) | (3.8)
Humeral lateral 1.5 | 13.1 | 2046 | 9.3 30.4 121.2 | 393.8
Epicondyle (3.1) | (8.9) | (109) | (5.4) (18) (114) | (371)
Humeral medial 1.8 13.3 | 1949 | 9.3 30.1 114.4 | 372.0
Epicondyle (3.7) | (11) | (108) | (5.2) (17) (106) | (346)
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arm. This is due in part to the use of the difference of symmetrical contours detailed
in 3.4.2.

Figs. 6.1 and 6.2 show the landmarks found at each stage and the final landmarks
that are retained by the final clustering. Note how the number of landmark points is
reduced to a few key locations. The location of the key landmarks sought for arm and
hand images are given in Table 6.3 and shown in figures 3.9, 3.11 and 3.12. The key
landmarks on the back include the base of the neck and the shoulder tips. From these
key landmark points, anatomical ROIs such as superficial muscles or dermatomes can
be recovered.

Fig. 6.3 shows the variation of landmark points returned when varying some of

parameters for the Harris, phase congruency and CSS method.
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(a) Stage 1 landmarks (b) Stage 1 landmarks

(c) Stages 2 & 3 landmarks (d) Stages 2 & 3 landmarks

(e) Final landmarks (f) Final landmarks

Figure 6.1: a and b: Landmark points returned by the first stage for two infrared images of
arms. ¢ and d: Landmark points returned by the second stage (blue points)
and region specific constrained landmark points (yellow points). e and f:
Landmark points returned after clustering and pair matching of the landmark
from previous stages. Star markers indicate the centroid of each remaining
cluster. Square markers are remaining landmark after initial clustering; Circle
markers are centroid of initial clustering.
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(a) Stage 1 landmarks (b) Stage 1 landmarks

&

(c) Stages 2 & 3 landmarks {(d) Stages 2 & 3 landmarks

(e) Final landmarks (f) Final landmarks

Figure 6.2: a and b: Landmark points returned by the first stage for two infrared images
of the back and hand. c¢ and d: Landmark points returned by the second
stage (blue points) and region specific constrained landmark points (yellow
points). e and f: Landmark points returned after clustering and pair matching
of the landmark from previous stages. Star markers indicate the centroid of
each remaining cluster. Square markers are remaining landmark after initial
clustering; Circle markers are centroid of initial clustering.
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(a) Harris, th =0.002,r =5  (b) Harris, th =0.001,r =5 (c) Harris, th = 0.001, r =3

(g) CSS, C = 1.3, 6 = 180 (h) CSS, C = 1.0, 6 = 180 (i) CSS, C' =1.3, 0 =170

Figure 6.3: a, b and ¢: Landmark points returned by the Harris corner detector with
different thresholds th and radii r for the non-maxima suppression. ¢, d and
e: Landmark points returned by the phase congruency method for different
thresholds th and radii r for the non-maxima suppression. f, g and h: Land-
mark points returned by the curvature scale-space method for different value

of C' and angles 6.
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6.3 Extraction of Clusters of Interest

In order to show how well the extraction of the clusters of interest perform, two
images with known anomalies were used. The first one was an IR image of a hand
and the second one was an IR image of two knees. The IR image of the knees was
acquired at the patient’s request and was not part of the ethical approval process
decribed in chapter 4. For the IR image of a hand, a cold circular object was pressed
on the dorsal part of a right hand sequentially, resulting in three clear circular cold
spots on the hand. The location of the circular object was known beforehand and it
was therefore a good test to see if each cluster was picked up accordingly. Fig. 6.4

shows the hand with the three artificial anomalies and the clusters of interest found.

(a) Original

(c¢) ART clusters (d) Final clusters
Figure 6.4: Extraction of clusters of interest. a: Original image; b: Clusters from thresh-

olded combined feature image. c¢: Clusters from ART clustering. d: Final
clusters. Red circles indicate the location of cold circular objects.
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For the Fuzzy ART clustering, the maximum number of claés was capped at 10,
since a higher number of classes has very little significance for the type of applica-
tions considered in this thesis. The initial weights of the ART network wererset to
1. The vigilance parameter was 0.75, which represents a compromise between broad
class generalization (low vigilance parameter) and highly specific class generalization
(vigilance parameter close to 1). The vigilance parameter therefore controls to a great
extent the growth of the network. The learning rate was set to 1 to ensure sufficiently
fast learning and reasonable time frame for the convergence of the clustering algo-
rithm. The number of epochs was set to 100. The initial bias parameter was set to
a small value of 107®. Note that an optimization procedure to determine optimal
parameters was not carried out in this work due to the lack of labelled database of
abnormal cases. However, a search for optimal parameters would be desirable for
reliable clustering in practical clinical situations.

Both ART and thresholding of the feature image produce the location of three
circular object. The ART clustering tended to overestimate the cluster sizes while the
feature image thresholding was more conservative. The final image was a compromise
between the two. Note the other hot spots in the hand that are visible on the original
image. They were also picked up as clusters of interest by our method.

Fig. 6.5 shows the different feature images and the final feature image.
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%

) Normalized contrast b) Entropy filter (¢) LoG

%

) Sobel ) Final feature image

Figure 6.5: Example of feature images. a: Normalized contrast (neighborhood size: 5);
b: Entropy filtered image (neighborhood size: 5); c¢: Laplacian of Gaussian
filtered image (0 = 3, I} = lo = 17); d: Sobel filtered image; e: Final feature
image with equal weights for all features.
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Figs. 6.6 and 6.7 show another example with an image of both knees. No precise
contour of abnormal regions were available for this image. However, the subject
imaged had a torn ligament below the left knee that had been confirmed by a physician
based on MRI scan data. The resulting inflammation can be seen clearly under the left
knee as a white region corresponding to an average temperature increase of +2.1°C

compared to the surrounding area and compared to the same region on the right knee

(Fig.6.6(a)).

(a) Original (b) Feature image clusters

(¢) ART clusters (d) Final clusters
Figure 6.6: Example of extraction of clusters of interest. a: Original image; b: Clusters

returned by thresholding the combined feature image. c¢: Clusters returned
by the ART clustering. d: Final clusters.
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(a) Normalized contrast b) Entropy filter

) Sobel (e) Final feature image

Figure 6.7: Example of feature images. a: Normalized contrast (neighborhood size: 5);
b: Entropy filtered image (neighborhood size: 5); c¢: Laplacian of Gaussian
filtered image (o = 3, I} = Iy = 17); d: Sobel filtered image; e: Final feature
image with equal weights for all features.

Since both contralateral sides are present in the image, it is possible to assess
the asymmetry between one knee and the other knee. The left knee was mirrored
and registered with the right knee through a simple translation in this case. The
absolute difference between the two knees was calculated and the results are shown in
figure 6.8. The absolute difference image was then thresholded using the 90% point
of the cumulative distribution function. The cluster location was then mirrored and

translated back to the original location of the left knee. The inflammation region is

clearly picked up.
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(a) Difference image (b) Clusters found

Figure 6.8: Example of asymmetry analysis. a: Difference image between left and right
knee; b: Clusters found by thresholding the difference image.
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Chapter 7

Applications of the Segmentation

and ROI Extraction

This chapter will introduce some original applications of the techniques described in

chapters 5 and 6.

7.1 Musculoskeletal Disorders

7.1.1 Playing-Related Musculoskeletal Disorders

Playing-Related Musculoskeletal Disorders (PRMDs) affect a large number of mu-
sicians. Statistics of prevalence vary among experts depending on the criteria used
to qualify these problems. However, even the most conservative studies agree that
PRMDs typically affect 43% of professional musicians and 17% of young musicians [160].
Experts’ estimates on prevalence of PRMDs sometimes are as high as 80% if light pain

and aches are taken into account. There is no consensus on the definition of PRMDs,
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although it is generally agreed that the symptoms are chronic, uncontrollable and
unusual and that PRMDs sensibly influences the playing of the instrument [161].
Furthermore, some researchers consider that the musician is the only one who can
define and qualify the severity of the disorders affecting his/her playing [160]. Indeed,
PRMDs cover a wide range of symptoms and neuromuscular pathologies (tenosynovi-
tis, focal dystonia, carpal tunnel syndrome, etc.) that primarily affect musculoskeletal
tissues of the hands, arms, shoulders, neck, face and back [161] [162] [163] [164]. These
symptoms are worsened, if not caused, by the repetitive and often forced motion
work of neuromuscular tissues during regular instrumental practice. In addition, a
vast majority of PRMDs induce inflammation as well as chronic pain, whose presence
is not limited to the piano practice. The myriad of symptoms, their non-specificity
and the subjective nature of associated pain make the diagnosis difficult to estab-
lish, except at later stages of PRMDs, which require surgical intervention followed
by lengthy recovery, or that the musician stops playing temporarily, and sometimes
indefinitely [162] [165] [166]. However, the diagnosis is greatly facilitated when the
clinical specialist has access to the patient medical history, physical evaluation of
the instrument, of contact areas between musicians and instrument as well as appro-
priate imaging data. Observing the musician in his/her environment is critical for
diagnosis [161] [167].

Being able to understand the mechanisms and the evolution of PRMDs is impor-
tant not only for a proper diagnostic and treatment but also to be able to limit the
severity of the disorders or prevent them from spreading to other parts of the body.
In addition, once the causes for the appearance of PRMDs are identified, it may

be possible to develop preventive measures: better technique, posture, pedagogical
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approaches that takes physical characteristics of the musicians into account.

7.1.1.1 Warm-up

Physical warm-up before intense physical activity is a commonly accepted practice in
sports. It consists of a series a physical exercises whose duration and intensity vary,
which are meant to increase the temperature of muscles, the blood flow to muscles
and the oxygen consumption. The temperature increase of the muscles would reduce
the resistance of muscles and articulations - lowering the risk of injuries - increase the
release of oxygen from hemoglobin and myoglobin, speed metabolism and increase
nerve conduction rate [168] [169]. Most warm-up routines in sports are active warm-
up but passive warm-ups are sometimes thought to produce similar effects on the
body although they are rarely used for practical reasons [168] [169]. Passive warm-up
techniques include hot showers, saunas, heating pads, warm rooms.

Physical warm-up is often considered necessary to achieve good sports perfor-
mance and reduce the risk of injuries. It is interesting to note, however, the lack of
scientific evidence demonstrating the benefits of different warm-up techniques. Phys-
iologic consequences of warm-up are still not fully understood, nor are the effects on
performance [168] [169].

Surprisingly, physical warm-up is far less systematic in the performing arts, be
they professional or amateur musicians. Some musicians, such as wind players, do
several minutes of specific exercises to increase the coordination of the muscles of
mouth [170]; singers do numerous respiratory exercises. The lack of warm-up is
particularly true for pianists for which the topic is still rarely discussed. A musical

warm-up is often substituted to a physical warm-up. Various musical pieces exist that
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make a specific group of muscles work before the practice starts [171]. The structure
of a musical warm-up, however, varies considerably and in many cases musical warm-
up does not serve its purpose, sometimes perhaps being even counter-productive (for
instance starting a practice by playing fast scales).

Nevertheless, one could compare the intensity and physical stress of a recital, con-
cert or even of a long practice session with a sports event. Following this premise,
one can legitimately think that musicians could benefit from the same positive effects
in terms of injury prevention if appropriate warm-up techniques were developed and
used systematically. One of the main effects of warm-up is an increase of the muscle
temperature, which in turn would lower the viscous resistance of muscles and articu-
lations, increase oxygen levels in muscles, increase anaerobic metabolism and increase
nerve conduction rate [168] [169]. Once again, scientific papers on the evolution of the
temperature of muscles and neuromuscular tissues are scarce, even in sports medicine
literature. In order to understand the effects of warm-up on performance and injury
prevention in musicians it is important to study the evolution of muscle temperature

in musicians.

7.1.1.2 Evolution of the Temperature of the Palm

Figs. 7.1 and 7.2 show the evolution of the temperature of seven anatomical regions
of the hand: the 5 fingers, the thenar muscles and the ulnar part of the lumbrical
muscles of the hand. The plots were obtained by using the segmentation, anatomical
ROI extraction and feature extraction blocks from figure 3.1. Features extracted
were the ones described in 3.7. Only the mean temperature is plotted, along with

the standard deviation of the mean temperature for each sequence of images. The
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input was the sequence of IR images in Matlab format that were transferred from
the FLIR proprietary format through FLIR Thermacam Researcher software. The
timing, temperature and scaling information is included in the image data. The only
manual input required was the anatomical view (palmar view of the hand). For
subject #1, there were 135 right hand images and 82 left hand images. It took an
average of 152.4 seconds and 90.5 seconds to process the two sequences of images
respectively (from input of the data to the final plot of the evolution of temperature).
For subject #2, there were 65 right hand images and 65 left hand images. It took an
average of 70.4 seconds to process each sequence of images.

According to the protocol described in Section 4.3.1, each point on the plots
corresponds to the average temperature of a region at a specific time during the

practice.
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Figure 7.1: Evolution of the temperatures of the 5 fingers, the thenar and lumbrical mus-
cles of the palm, during a piano practice for subject #1.
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Figure 7.2: Evolution of the temperatures of the 5 fingers, the thenar and lumbrical mus-
cles of the palm, during a piano practice for subject #2.

7.1.1.3 Evolution of the Temperature of the Upper-arm

The plots in figures 7.3 and 7.4 show the evolution of the temperature of 6 anatomical
regions of the upper-arm (dorsal view), that were shown in Figs. 3.8 and 3.10. The
sequences were from the database of IR images of pianists. Two subjects are shown.

Again, the plots were obtained by using the segmentation, anatomical ROI ex-
traction and feature extraction blocks from diagram 3.1. Features extracted were
the ones described in 3.7. Only the mean temperature is plotted, along with the
standard deviation of the mean temperature for each sequence of images. The input
was the sequence of IR images in Matlab format that were transferred from the FLIR
proprietary format through FLIR Thermacam Researcher software. The timing, tem-
perature and scaling information was included in the image data. The only manual
input required was the anatomical view (dorsal view of the upper-arm). It took an
average of 0.95 second per image to process the sequences of images (from input of

the data to the final plot of the evolution of temperature).
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Figure 7.3: Evolution of the temperatures of the superficial muscles of the upper arm,
during a piano practice for subject #1.
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Figure 7.4: Evolution of the temperatures of the superficial muscles of the upper arm,
during a piano practice for subject #2.
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7.1.2 Repetitive Strain Injuries in Computer Users

This application focuses on injuries affecting the hands and wrists (carpal tunnel
syndrome, tenosynovitis, ulnar tunnel syndrome, Raynaud’s disease, etc). Upper
extremity disorders are common among workers who typically perform prolonged
repetitive tasks. Diagnosis is difficult due to the multiplicity of symptoms and the
subjectivity of the pain involved. Typical tests include physical tests (Phalen’s test,
Tinel test, Finkelstein’s test), questionnaires or diagrams, and electrodiagnostic tests.
Most repetitive strain injuries affect the temperature distribution of the musculoskele-
tal system and by extension of the skin, which can be recorded by infrared imaging,
analyzed and classified.

Fig. 7.5 shows a comparison of the left and right palm for the 7 regions mentioned
above and an additional anatomical region corresponding to the carpal tunnel area
of the wrist. Notice that both hands are on the; same image, so the segmentation
block was run iteratively in this case, to be able to detect both hands. After one
hand has been detected, the corresponding region was removed for the next pass of
the segmentation. The subject was complaining about pain in the left wrist and left
elbow area and tingling in the ring and index finger of the left hand after several
hours of computer use. The subject filled the questionaire from Appendix A but
electrodiagnostic tests had not been performed yet at the time of the imaging.

The mean temperature difference between contralateral regions are given in Table
7.1.

The temperature difference of region 8 (carpal tunnel region), is relatively high in
this case as well as the thenar and part of the lumbrical muscle regions (regions 1 and

2). This could be indicative of an early inflammation of the carpal tunnel region.
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Figure 7.5: Comparison of left vs right anatomical regions of the palm.

168

Table 7.1: Comparison of temperature of left vs right anatomical regions of the palm.

Region | Mean temp. left | Mean temp. right | Difference
(std) (std)
1 30.53 (1.18) 29.00 (0.85) 1.53
2 29.43 (1.34) 28.39 (0.87) 1.04
3 25.21 (1.61) 24.54 (1.32) 0.67
4 25.08 (1.26) 25.19 (1.44) 0.11
5 25.74 (1.46) 25.49 (1.35) 0.25
6 25.81 (1.40) 25.11 (1.04) 0.70
7 25.55 (1.27) 25.20 (1.62) 0.35
8 31.80 (0.70) 30.70 (0.80) 1.10
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Automated analysis of thermal IR images of the human body is a difficult problem in
part due to the characteristics of thermal images, the difficulty in extracting relevant
information and the lack of medical IR databases with labelled normal and abnormal
data.

The following contributions to knowledge are derived from this thesis. First,
a general modular architecture for automated detection of anomalies in clinical IR
images was presented. The proposed architecture is flexible and adapts to the amount
of information available for specific application. This contribution was published in C.
Herry, M. Frize, “Design considerations for a medical thermographic expert system,”
in Proceedings of the 25th Annual International Conference of the IEEE EMBS,
Cancun Mexico, Sept. 17th-21st 2003 [172].

From that general architecture, the segmentation and the extraction of regions of

interest blocks were thoroughly investigated. Several novel segmentation approaches
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were proposed. The first one called cued morphological processing of edge maps uses
a minimum amount of @ priori information about the region sought in order to con-
strain the morphological processing of edge components. This approach was shown
to outperform significantly existing state-of-the-art segmentation techniques, espe-
cially when dealing with faint regions in challenging conditions. This contribution
was published in C.L. Herry, R.A. Goubran and M. Frize,“Segmentation of infrared
image using cued morphological processing of edge maps”, in Proceedings of the 2007
IEEE Instrumentation and Measurement Technology Conference (IMTC07), Warsaw,
Poland, 2007 [157]. The second segmentation approach is based on the classifica-
tion of edge components with a Support Vector Machine classifier or a Multilayer
Perceptron. The classifiers are trained on a database of features characteristic of
edge components belonging to the contour of the object of interest. Once trained,
the classifiers can recover the entire contour in normal situations and at least parts
of the contour in difficult situations. These partial contours can in turn be used in
conjunction with other segmentation approaches to recover missing contour regions.
A third segmentation approach was introduced as a robust segmentation block for the
anomaly detection framework. This approach is a fusion strategy that combines sev-
eral segmentation approaches, including the cued morphological processing of edge
maps, the SVM and ANN classification of edge components, optimal thresholding
and FCM clustering, in order to increase the overall segmentation performance. The
proposed fusion strategy is a rule-based fusion using morphological post-processing
of the combined segmented contours. When compared with existing decision fusion
schemes, including a fusion scheme based on majority voting with binary weights and

a Bayesian fusion scheme, the proposed rule-based fusion strategy demonstrated its
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superiority. Finally, a technique was described to automatically segment specific re-
gions such as the breast. This minor contribution was published as part of N. Scales,
C. Herry and M. Frize, “Automated image segmentation for breast analysis using
infrared images”, in Proceedings of the 26th Annual International Conference of the
IEEE EMBS, San Francisco California, 2004 [34].

As part of the second main contribution of this work, a new approach to identify
anatomical ROIs in IR images using automatically found landmarks was presented.
This approach is based on curvature analysis of the region contour, a curvature anal-
ysis of the distance between contours for symmetrical regions, and region specific con-
straints. The results are well localized clusters of landmarks that accurately reflect the
true location of key anatomical landmarks on the region contours. This contribution
has been accepted for publication in C.L. Herry, R.A. Goubran and M. Frize, “Im-
proving the Detection and Localization of Anatomical Landmark Points in Infrared
Images Using Symmetry and Region Specific Constraints”, for the 2008 IEEE Inter-
national Instrumentation and Measurement Technology Conference I2MTC 2008,
Victoria, Vancouver Island, BC, Canada, May 2008. Furthermore, a technique for
extracting anatomical regions from the previously found anatomical landmarks on
thermal IR images was described. A few key points on the region contour are iden-
tified and they allow a simple affine transform to recover anatomical ROIs. This
was used to study the evolution of surface temperature of pianists’ arm muscles dur-
ing a piano practice. This contribution was published in C.L. Herry, M. Frize, R.A.
Goubran, G. Comeau, “Evolution of the surface temperature of pianists’ arm mus-
cles using infrared thermography”, in Proceedings of the 27th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, September
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2005 [173]. A minor contribution was also presented for the extraction of potentially
abnormal ROIs, that is based on a fusion of clusters extracted from a combination of

feature images and an unsupervised clustering through a fuzzy ART neural network.

8.2 Suggested Future Work

Several areas of the work presented in this thesis would benefit from further in-
vestigation. The first one is the issue the segmentation of multiple overlapping body
regions, in which case the contour of each region may not be recovered fully and some
of the key landmarks may not be available. Recovery of anatomical regions is likely
to be complicated by this aspect and additional processing steps may be needed to
obtain partial recovery of anatomical regions of interest.

The second area of resea_rch that will need to be addressed is the classification
block in our architecture, as presented in the overview diagram of figure 3.1. This will
require the help of a medical expert that would be able to link potentially abnormal
thermal patterns with specific pathological thermal dysfunction. Once a set of labelled
abnormal patterns is available, then each sub-classifier proposed in our architecture
can be trained on normal or abnormal thermal patterns and provide a solid basis for
finding abnormal thermal patterns. An unsupervised anomaly detection scheme can
then be added to detect unseen thermal patterns that may be abnormal.

A third area for future research is the real-time tracking of specific regions over
long sequences. The results presented in chapter 7 showed examples of automated
analysis of the evolution of temperature of body regions over time, where each frame of
a sequence was analysed separately (segmentation and extraction of ROISs). This is not

practical for real-time or near real-time sequence analysis in fast moving environment
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(for instance a sequence of a pianist playing the piano). The tracking of regions using
temporal cues and landmark points could help speed up the processing and enable a
real-time analysis that could identify more subtle temperature variations over time
for each body region considered.

Finally, the extension of our architecture to incorporate information from several
IR cameras or visible cameras could benefit several stages of processing, facilitating
the segmentation and extraction of ROIs as well as helping a medical specialist to

visualize the abnormal regions.
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Appendix A

A.1 Thermographic Protocol

The following guidelines were followed prior to a thermographic imaging session:

e No talcum powder, lotion, drug or deodorant should be used on the skin on the

day of the session.
e No alcoholic beverages should be consumed 24h prior to the session.
e No hot beverages should be used at least 1 hour prior to the session.

e Avoid the use of procedure such as electromyography, acupuncture, myelogra-
phy, transcutaneous electrical stimulation, hot or cold patches, or any other

form of physiotherapy at least 24h prior to the session.
e Avoid prolonged sun exposure at least one week prior to the session.
¢ You should not smoke at least 2 hours prior to the session.

e You should not wear any ring, necklace, and bracelet during the session.
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e You should not do any intense physical exercises at least 4 hours prior to the

session.

The session will take place in a room with the following characteristics (as much as

possible):

e No windows or covered windows to avoid any reflection.

Constant uniform temperature between 20 and 25 degrees Celsius.

Constant humidity.

No shiny or plastic floor.

Fluorescent lights only.

A.2 Questionnaires

A.2.1 RSI Questionnaire

Part 1
Identification Number:
Age:
Sex: [] Female [] Male
Height: Weight:

The following questions refer to your symptoms for a typical twenty-four-hour

period during the past two weeks (circle one answer to each question).
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How severe is the hand or wrist pain that you have at night?
1. I do not have hand or wrist pain at night.

2. Mild pain

3. Moderate pain

4. Severe pain

5. Very severe pain

‘How often did hand or wrist pain wake you up during a typical night in
the past two weeks?

1. Never

2. Once

3. Two or three times
4. Four or five times

5. More than five times

Do you typically have pain in your hand or wrist during the daytime?
1. I never have pain during the day.
2. T have mild pain during the day.
3. I have moderate pain during the day.
4. I have severe pain during the day.

5. I have very severe pain during the day.

How often do you have hand or wrist pain during the daytime?

1. Never
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2. Once or twice a day
3. Three to five times a day
4. More than five times a day

5. The pain is constant.

How long, on average, does an episode of pain last during the daytime?

[u—

. I never get pain during the day.

[\

. Less than 16 minutes

w

. 10 to 60 minutes

N

. Greater than 60 minutes

ot

. The pain is constant throughout the day.

Do you have numbness (loss of sensation) in your hand?
1. No
2. I have mild numbness.
3. I have moderate numbness.
4. T have severe numbness.

5. I have very severe numbness.

Do you have weakness in your hand or wrist?
1. No weakness
2. Mild weakness
3. Moderate weakness

4. Severe weakness
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5. Very severe weakness

Do you have tingling sensations in your hand?
1. No tingling
2. Mild tingling
3. Moderate tingling
4. Severe tingling

5. Very severe tingling

How severe is numbness (loss of sensation) or tingling at night?
1. I have no numbness or tingling at night.
2. Mild
3. Moderate
4. Severe

5. Very severe

How often did hand numbness or tingling wake you up during a typical
night during the past two weeks?

1. Never
2. Once

Two or three times

LS

Four or five times

5. More than five times
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Do you have difficulty with the grasping and use of small objects such as
keys or pens?

1. No difficulty

2. Mild difficulty

3. Moderate difficulty
4. Severe difficulty

3. Very severe difficulty

Part 11

On a typical day during the past two weeks, have hand and wrist symptoms caused
you to have any difficulty doing the activities listed below. Please circle one number

that best describes your ability to do the activity.
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Activity No Mild Moderate | Severe Cannot
Difficulty | Difficulty | Difficulty | Difficulty | at all

Writing 1 2 3 4 5
Buttoning of | 1 2 3 4 5
clothes

Holding a book | 1 2 3 4 5

while reading

Gripping of a |1l 2 3 4 5

phone handle

Opening of jars |1 2 3 4 5
Household 1 2 3 4 5
chores
Carrying of bags | 1 2 3 4 )
Bathing and | 1 2 3 4 )
dressing

Part II1

Did you have any injuries to your arms and forearms requiring surgical

procedure?

[ ] Yes (Please list the injuries/surgical procedures)

[ ] No

Do you have sleep disorders?
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[ ] Yes

[ 1 No

Do you smoke?
[ ] Yes

[ ] No

How much time do you spend at the computer each day?
1. Less than an hour
2. One to two hours
3. Two to three hours
4. Three to four hours

5. More than four hours

What types of job do you do on the computer?
1. straight input or editing
2. intellectual use

3. mixed use
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4. binge work

Do you most frequently use the mouse or the keyboard?
[ ] Mouse

[ ] Keyboard

How often do you take breaks when at the computer?
What do you do on a break?

Do you do other heavy work with your hands?
1. Handcrafts (for instance, carpentry, gardening, etc.)

2. Musical instrument

3. Other

Are you:
1. Left-handed?
2. Right-handed?

3. Ambidextrous?
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Do you have any of the following conditions?

1. Diabetes

2. Collagen disorders

3. Kidney or thyroid disease

4. Peripheral neuropathy or with onset of symptoms after trauma.

Part IV

Please indicate on the following diagram all the areas where you experience numbness
(Put a symbol 'N’), tingling (put a symbol *T”), pain (put a symbol 'P’), decreased

sensation (put a symbol ’S’):

Y -

i N A 4 \f" (
LW Y )

' ;] |
o \;m‘;__;‘;;_f/ i
¢

{ Suis n A e )
i ot i‘;‘é M;“g 4{; _
/! ,3} ‘*\R\\:;\‘é j § R ffifi’f? { Li‘

Figure A.1: Pain Hand Diagram
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A.2.2 Pianist Questionnaire

Identification Number:
Age:
Gender: |[] Female []Male

1. How many years have you been playing the piano?
2. How many hours (or minutes) of piano do you play every day?

3. Do (or did) you play another instrument? If yes, please specify which instrument

you have (or had) been playing and for how many years.

4. Do you have pain, weakness, lack of control, numbness, tingling, or other symp-
‘toms that interfere with your ability to play the piano at the level you are

accustomed to?

5. How frequently do you experience these symptoms (pain, weakness, lack of

control, numbness, tingling)? Please circle one answer.

e Once in a while.

Regularly.

Constantly.
Other (specify)

6. Are the symptoms controllable?

7. Do you have any of the following health problems?

e Joint pain, swelling, erythema
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e Muscular pain, swelling

e Bone and joint deformities or infections

e Metabolic bone disease

e Compartment syndrome

e Avascular necrosis

e Osteoporosis

e arthritis

e Other health problems that would affect the musculoskeletal system

8. Did you have an accident resulting in an injury (e.g. broken arm) within the

last 12 months?

9. Do you do a musical warm-up (e.g. playing slow scales or else)?

e If yes, what do you play?

10. Do you do a physical warm-up before playing (e.g. stretching exercises, etc.)?

Please circle one answer.

e Never

e Sometimes
e Often
Always

11. If yes, what warm up exercises do you do?

12. Are there any other physical parameters that, according to you, influence the

way you play the piano? If yes, please mention which ones.

13. Which pieces are you going to play?
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14. Other relevant comments:
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Appendix B

B.1 Moment Invariants

B.1.1 Central moments

Central moments are used to describe characteristics of an image. They are transla-
tion invariant. It is possible to obtain scale, translation and rotation invariance by
using a combination of central moments. The definition of the various moments is
given below. Central moments of order pq for an image f(x,y) are found using the

following formula:

Hpg = Z Z(x —Z)(y - 9)f(z,y) (B.1)

B.1.2 Hu’s Moments

For i + j > 2, central moments can be made scale invariant using:

R
i = — a3
144
Hoo

(B.2)
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Hu used a combination of the scaled central moments to produce a set of moment

invariants that are invariant to scale, translation and rotation changes [174].

b1
P2
b3
P4
s

b6
o7

20 + No2 (B.3)
(m20 + m02)” + 40y (B.4)
(30 + 3m12)? + (3021 — n03)? (B.5)
(m30 + m2)? + (1121 + 7703)* (B.6)

(130 — 3m12)(n30 + m2) ((mso + m2)? — 3(nr +

103)°) + (3021 — 103) (121 + 0a) (3(Mso + M2)* — (M21 + 103)°) (B.7)
(1120 — M02) ((Ms0 + 2)* — (M21 + M03)?) + 4m11(M130 + M12) (M21 + 703) (B.8)
(3721 — 70s) (M30 + m2) ((Mso + M2)? — 3(11 + Mes)?) +

(3m12 — m30) (21 — 703) (3(m30 + M12)* — (M1 + M03)?) (B.9)
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B.1.3 Maitra’s moment invariants

Maitra went further and proposed a combination of Hu’s moments that make them

invariant to contrast changes as well [175].

P2

pr = 5 (B.10)
n = ey
By — % (B
By = % (B.13)
By — ﬁ (B.14)
P = %—:— (B.15)

B.1.4 Zernike moments

Zernike introduced a set of complex polynomials which form a complete orthogonal
set over the interior of the unit circle, i.e., 22 + 9% = 1. These polynomials are of the

form:

Vam(Z, ¥) = Vam(p, 0) = Rpm(p) exp(jmé) (B.16)

Where n is a positive integer or zero, m is an integer such that n — |m| is even and
Im| < n, p is the length of the vector from the origin (centre) of the image to pixel

(x,y) and @ is the angle between the previous vector and the x axis (counterclockwise).
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R.m(p) is a radial polynomial defined as:

n_‘ml/Q (n . S)!

Bam(p) = D (-1~ (%@ﬂ)!(%_s)!w-% (B.17)

5=0

Zernike moments are the projection of the image function onto these orthogonal
basis functions. The Zernike moment of order n with repetition m for an image f(z, Y)

is:
n+1
T

Anm =

> f@y)Vanlp,0) @4y <1 (B.18)
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