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Multi-Camera System Design, Calibration and

3D Reconstruction for Markerless Motion Capture

M. A. Sc. Thesis — Abstract

Silvain Bériault

Recently, significant advances have been made in many sub-areas regarding the problem
of markerless human motion capture. However, markerless solutions still tend to
introduce major simplifications, especially in early stages of the process, that temper the
robustness and the generality of any subsequent modules and, consequently, of the whole
application. This thesis concentrates on improving the aspects of multi-camera system
design, multi-camera calibration and shape-from-silhouette volumetric reconstruction. In
Chapter 3, a thoughtful system analysis is first proposed with the objective of achieving
an optimal synchronized multi-camera system. Chapter 4 proposes an easy-to-use multi-
camera calibration technique to estimate the relative positioning and orientation of every
camera with sub-pixel accuracy. In Chapter 5 a robust shape-from-silhouette algorithm,
with precise voxel coloring, is developed. Overall, the proposed framework is successful
to reconstruct various 3D human postures and, in particular, complex and self-occlusive

pianist postures in real-world (minimally constrained) scenes.
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Abstract

Markerless motion capture, in contrast to marker-based gesture analysis, consists of
extracting high-level human body kinematic information using passive vision only. The
goal of markerless motion capture is to remove severe cumbersomeness issues regarding
current commercial, and state-of-the-art, marker-based systems. In particular, marker-
based solutions require the wearing of uncomfortable markers, which can interfere with
natural gesture of performers. On the counter-part, markerless solutions lack robustness
and tend to impose unacceptable constraints into the working environment for many
applications. Currently, these limitations prevent markerless motion capture to replace
marker-based systems in most real-world markets. Addressing these issues, the thesis
presents a framework for markerless motion capture with specific interest on increasing
the robustness of early topics within the chain of modules that compose such an
application. In particular the topics of multi-camera system design, multi-camera

calibration and volumetric reconstruction and coloring are studied.

The main goal of the project is to perform a complete system design analysis that
will lead to the development of a reconfigurable synchronized multi-camera system
which is optimized for the specific application of motion capture. A solid high-level
software framework for multi-view application is also developed and is effective to
encapsulate low-level interactions with the camera hardware. The designed acquisition
setup is calibrated using a convenient framework for multi-camera calibration that allows
free camera positioning. The proposed multi-camera calibration approach is able to reach
precision up to an average reprojection error below Y2 pixel. The use of a novel and
reconfigurable dual-marker target is proposed to achieve complete calibration with no
scale factor ambiguity (i.e. metric calibration). The full registration of all cameras
composing the network enables shape-from-silhouette volumetric reconstruction using
voxel data. The proposed implementation is effective at computing the binary voxel
occupancy information even in the presence of imperfect silhouette data. Beyond voxel

occupancy computation, foreground voxels are also augmented with color texture. The

it
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color information contained in the multiple streams of video is effectively mapped onto
the voxel data with proper visibility test to detect situations of occlusion. Experimental
results presented at the end of this thesis demonstrate successful 3D human body
reconstruction with adequate accuracy for motion capture. The example of motion
capture for piano-playing performance evaluation is used to show the capability of the

proposed framework to effectively reconstruct complex, self-occlusive, human postures.

iii
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Chapter 1. Introduction

Human motion capture is fundamentally concerned with the understanding and the
analysis of human gesture. It consists of analyzing the evolution of the human posture
over time. Initial attempts at motion capture were performed manually, simply by
playing-back a video signal featuring a human performer. Video playback is still in use
for numerous applications, especially in pedagogical setups. However, with recent
advances related to digital sensors and computer technologies, it became strongly
desirable to automate motion capture such that the position and the angle of body joints,
and even the speed and acceleration of limbs, would be detected automatically and with

high accuracy.

Computer-based motion capture is of great interest in a wide variety of
applications. Nowadays, it is extensively used by the entertainment industry. Indeed, it
became usual, in the latest generations of animated movies and video games, that real
human motion is digitally captured and mapped into animated characters, with a high
degree of realism. In the field of biomedical engineering, human motion capture finds
applications in gait analysis for rehabilitation and prevention of injuries. In this field,
automatic extraction of the human posture is of great assistance because it allows
information about all human joints to be monitored simultancously, while a human
physician could only monitor a few joints at a time. Furthermore, prompt recognition of
human activities can be applied for various surveillance tasks. Classical surveillance
systems are limited to detecting the presence or absence of one or many human subjects
within a volume of interest. It is expected that the next generation of surveillance
systems would have great interest in understanding the actual and evolving behavior of

human subjects in order to automatically detect and react to those judged undesirable.
In this research project, we are particularly interested in developing a multi-camera

system dedicated to monitor human gesture in the context of piano-playing performance

evaluation and prevention of injuries. Indeed, repetitive movements performed by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



professional pianists can lead to long-term injuries, when incorrectly performed. Russell
[1] reports that 39% to 47% of adult pianists will develop Playing-Related Health
Problems (PRHP) throughout their career. Russell also reports that as high as 17% of
student pianists tend to develop PRHPs. Thus, providing computerized motion capture
instrumentation to musicians is of great interest because it would provide more accurate,
more complete and less subjective gesture analysis, which could potentially lead to
preventive detection of false movements prior to the occurrence of serious injuries. Such
an achievement could benefit to a large population as it is estimated that over 100 000

students graduate every year from musical schools within North-America [1].

Computer-based motion capture constitutes a complex system design problem
because multiple camera sensors need to be registered both temporally and
geometrically. Frames of video must be precisely synchronized to ensure time-
consistency in the data acquired across all cameras and computers over the network.
Furthermore, the data from all viewpoints need to be geometrically registered to enable
adequate fusion of data in the 3D space. Moreover, the human body is highly deformable
and, hence, can adopt a wide variety of postures with different levels of complexity.
Therefore, the particular example of pianist posture estimation with a markerless motion
capture system is challenging because of the problem of self-occlusion and the presence

of a piano which limits the positioning of cameras.

1.1 Motivations

Besides manual motion capture, systems for computerized motion capture can be
distinguished in two main categories: marker-based and markerless systems. Marker-
based systems [2-7] are characterized by the fact that the performers must wear multiple
markers in order to capture the various movements. Such markers are chosen to be easy
to identify in space and can consist of magnetic trackers, reflective markers or light-
emitting devices (LEDs). For example, the Vicon Peak™ system [5] uses reflective

markers, which are identified accurately using specially designed camera hardware.
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Those markers are manually associated with specific body joints. This greatly simplifies
the actual human posture estimation and thus the resulting human kinematics estimation
is usually very reliable. In general, marker-based solutions are more robust than
markerless solutions and they can operate at very high frame rates. They are particularly
appealing to the cinema industry, but are also commonly used for advanced biomedical
research. On the counter-part, marker-based solutions also admit several drawbacks.
They typically require very specialized and high-cost equipment. It is time consuming to
install many markers on each performer. Furthermore, wearing such markers can be
cumbersome, uncomfortable, and can interfere with natural motion of the performers. In
the particular application of interest, it is predictable that pianists may tend to modify
their motion in order to compensate for some discomfort introduced by markers installed

on wrists, finger tips, neck or face.

Markerless solutions attempt to remove those constraints by using solely passive
vision for gesture monitoring. Markers are completely avoided and specialized camera
hardware equipment is replaced by standard, off-the-shelf, color cameras. Unfortunately,
current markerless systems are very limited and not yet ready for commercialization
because of their lack of robustness, reliability and versatility. As it will be detailed in
Chapter 2, current markerless systems impose severe constraints both on the clothing of
the performers and on the content of the background. Furthermore, these systems are

mostly limited to the detection of a subset of simple and non-occlusive human postures.

This thesis presents the design and implementation of a new markerless human
motion capture system. The main motivation of this research project is to increase the
overall robustness of markerless systems in order to facilitate their deployment in real
world applications. In particular, the purpose of this work is to remove several
constraints regarding the complexity of the working environment as well as the
versatility of the reconstructed 3D human body postures. The implemented system is
primarily dedicated to the monitoring of pianist postures, but is not restrained, in any

way, to this sole application.
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1.2 Objectives

The implementation of a robust markerless human motion capture system can be
decomposed into several distinct modules, as illustrated in Figure 1.1. Obviously, the
first topic is the elaboration of a physical multi-camera system which is designed to
uniformly surround a bounded working environment and which will serve the purpose of
gathering synchronized video data. The completion of this module enables multi-camera
calibration and silhouette extraction which both require synchronized video recording
capabilities. The multi-camera calibration task is a special initialization procedure which
serves the purpose of registering, in 3D, the positioning of all camera sensors. The
purpose of the silhouette extraction procedure is to decompose, frame-by-frame, the
content of the synchronized video sources to separate pixels that pertains to the subject
of interest from those that belong to the background. The volumetric reconstruction
module consists of combining silhouette data and calibration data to obtain a consistent
3D model of the performer. This reconstructed model is used as the main cue to extract
higher-level information about the human posture. This is, in fact, the objective of the

human pose estimation and of the human gesture tracking and analysis modules.

Silhouette Extraction

Figure 1.1. Various modules related to the design of a markerless human motion capture system

The work presented in this thesis concentrates on early modules, within the entire
chain of activities, which are highlighted in gray in Figure 1.1. The silhouette extraction
procedure is not highlighted because this task was performed concurrently by a colleague

[8-10] and is not the focus of this thesis. As it will be established in Chapter 2, we can
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denote, from the literature, that many simplifications are introduced in those areas, which
temper the robustness and the generality of any subsequent modules and, consequently,
of the entire application. In order to alleviate these limitations, the main objectives of the

present work include:

® A complete formal design and implementation of a reconfigurable multi-camera
system. This work also results in the design of a solid software framework for
synchronized multi-camera applications that encapsulates and handles low-level

interactions with the camera hardware.

The development of a user-friendly framework for multi-camera calibration,
which is resolved using a weighted camera graph and which results in the precise
registration of a variable number of cameras to a common global coordinate

system with an estimated accuracy below Y2 pixel.

The development of a shape-from-silhouette reconstruction algorithm extended
with effective voxel coloring. The outcome of this work is the binary occupancy
classification of each voxel that subdivides the working environment into either
“background” or “foreground” with proper compensation for imperfection in 2D
silhouette (segmented) images. The color information from all views is then
analyzed and combined, with adequate occlusion detection, to determine a final
color for each foreground voxel. The designed algorithm, while being
deterministic (not iterative), provides suitable voxel coloring for the purpose of

motion capture, even in presence of highly self-occluded human postures.

The elaboration and formalization of a solid framework for markerless motion
capture. Combining the robust technologies developed within this work results in
the removal of a specific set of constraints related to the performer and to the

working environment. Overall, this framework provides effective foundations for
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versatile markerless motion capture therefore moving a step forward towards the

deployment of markerless systems for real-world applications.

1.3 Thesis Outline

This thesis is organized as follows: Chapter 2 presents a survey of the most recent
advances in the field of motion capture with special emphasis on the problems of multi-
camera system design, calibration and volumetric reconstruction. Chapter 3 presents a
complete analysis of multi-camera system design which addresses various topics ranging
from adequate camera hardware selection to the implementation of a robust software
framework for synchronized multi-video acquisition and processing. This exhaustive
analysis is performed with the objective of providing higher quality input video data to
the subsequent modules composing the system. In Chapter 4, the 3D registration of all
cameras is estimated using a systematic framework for multi-camera calibration. The
obtained calibration data is then used, in Chapter 5, to merge multiple synchronized
video sources of a performer into consistent and colored 3D voxel models. Chapter 6
revisits the major topics discussed in this thesis with special emphasis on contributions
and enhancements brought in specific areas within the field of markerless motion

capture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2. Literature Review

Computerized motion capture has been of great interest over the last decade to
overcome obvious drawbacks related to manual analysis of human gesture. However,
computerized motion capture and, in particular, markerless motion capture still admits
several flaws. As a result, this field of research remains open. This chapter presents a
review of the latest advances in the field of motion capture and is subdivided as follows:
The first section presents a global overview of the various technologies used for motion
capture. The second section provides details about recent markerless motion capture
systems since the aim of this project is the development of a system based solely on
passive vision technologies. The following three sections provide reviews related to the
three main topics of interest studied in this work: multi-camera system design, multi-

camera calibration and volumetric reconstruction.

2.1 Overview of Motion Capture Applications

Methods for motion capture can be subdivided into three main categories: manual,
marker-based, and markerless motion capture. Manual motion capture is the simplest
form of gesture analysis and has been used for several years. Over the last decade, many
marker-based systems for motion capture have been successfully commercialized. The
current status of markerless motion capture remains mainly experimental and, to the best
of our knowledge, no markerless system can fulfill all requirements needed for the vast

majority of real-world applications.

2.1.1 Manual Motion Capture

Manual motion capture is the most simplistic form of motion capture. It consists of

recording a video of a performer which is then analyzed manually by a human operator.
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This form of motion capture is not optimal because the analysis is subjective and can
differ from one operator to another. Furthermore, there is a loss of information because
data acquired through an optical camera consists of a 2D perspective representation of a
3D reality. Nevertheless, manual motion capture remains useful in sports, for example to
analyze, in very slow-motion, the swing of professional golfers or the service routine of
tennis players. Commercial software, for example the Dartfish ProSuite™ application

[11], has been designed to assist in performing such tasks.

2.1.2 Commercial Marker-Based Motion Capture

Marker-based systems constitute the state-of-the-art for human motion capture in
real-world applications. Marker-based motion capture provides higher-level kinematics
information inferred by detecting the position, in full 3D space, of multiple markers worn
by a performer. To identify the position of these markers, multiple technologies have
been used: magnetic trackers [2-4], optical markers [5-7] or even special phosphorescent

makeup [12].

Magnetic tracking systems require a performer to wear multiple receiver sensors
(markers). A stationary sensor (transmitter) is used to generate magnetic fields using a
coil of wire. On the receiver side, the magnetic fields are measured and that resulting
signal serves at estimating the position of the marker with respect to the transmitter.
Magnetic tracking is advantageous because it is a low-cost solution and because the
problem of occlusion is inexistent. Indeed, magnetic fields can travel across the human
body without problem. However, magnetic tracking also admits severe drawbacks which
limit its range of applications. Magnetic tracking is very sensitive to measurement errors
and, in particular, to interference with metallic objects and electronic devices commonly
present in real-world environments. Furthermore, magnetic tracking is very cumbersome
because of the relatively large size of markers attached to the human body and because
of the cabling required to report the measurements back to a control station. Nowadays,

wireless markers are emerging, therefore partially removing the cumbersomeness
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constraint (cabling is avoided) [3, 4]. Finally, the number of markers is physically
limited, in hardware, thus reducing the number of points used for human kinematic
estimation. For example, the Liberty Latus™ system [4] is limited to a maximum of 12

markers.

Many issues related to magnetic tracking are resolved with the use of optical
markers. The Vicon Peak™ [5] and the Motion Captor™ [6] solutions both utilize
optical reflective markers. Absolutely no cabling to the performer is required. Reliable
tracking in the 3D space is assured using multiple instances of specialized and accurately
calibrated high-cost camera hardware. The number of markers in use is scalable and is
not limited in hardware. Furthermore, the size of markers is generally smaller in
comparison to magnetic sensors. Thus, several feature points can be used for kinematics
modeling. However, the wearing of markers remains uncomfortable and lengthy setup
time is required prior to the motion acquisition. In order to reduce the overall application
cost, the Phase Space Impulse™ system [7] utilizes light-emitting device (LED) markers
fixed to a highly contrasting black costume worn by the performer. Multiple calibrated
color cameras with very high frame rate are used to track the markers. However, wiring

is required to activate the LEDs thus reducing the mobility of the performer.

With the use of either magnetic or optical markers, only a few points pertaining to
the human body are reconstructed in 3D. This number is limited by the amount of
markers installed on the performer. The Mova® Contour™ [12] innovates in replacing
markers with a special phosphorescent makeup (for skin) and phosphorescent powder
(for clothing) that glows in the dark. Over 100 thousands points can be collected such
that facial expressions are captured with a very high degree of realism. This
implementation is a first step towards markerless systems. However, it should be noted
that wearing such a glowing makeup is only useful in indoor environments where
lighting is precisely controlled and can be toggled (on/off) electronically at a very high
frequency. Furthermore, wearing makeup is cumbersome especially for physically
intensive activities and thus cannot be used, for example, to monitor the gesture of

professional athletes. Finally, their proposed setup requires an expensive multi-camera
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network containing over 40 cameras that operate at very high frame rate (>100 fps). The
main application of this technology remains limited to movie making and computer

gaming.

2.1.3 Markerless Human Motion Capture

Markerless gesture analysis is performed solely using passive vision technologies
and is significantly advantageous because it removes the cumbersomeness of installing
and wearing multiple markers on human performers. However, important robustness
issues, which will be analyzed in depth in section 2.2, still prevent markerless gesture
monitoring solutions from replacing marker-based systems in most real-world
applications. A few commercial markerless products are starting to emerge but their
application remains limited to very controlled working environment (i.e. movie making
and computer gaming). For example, the markerless motion capture demo proposed by

Organic Motion® [13] is constrained to a rather unrealistic and empty white room.

In general, research regarding markerless motion capture is subdivided in two main
paradigms. Initial attempts consisted of fitting a 3D articulated model of the human body
by projecting it in multiple image views [14, 15]. For example, in Delamarre et al.’s
implementation [15], human kinematics was found by projecting and fitting such a 3D
articulated model until it projects within the real human silhouette in every view
simultaneously. Throughout this discussion, the term “human silhouette” corresponds to
a 2D surface, within an image, that includes all the pixels pertaining to the targeted

performer.

Over the years (2000 to present), an inverse paradigm has arisen. Instead of
projecting a 3D articulated model into multiple image views, the content of these images
are combined into a consistent 3D model used to infer human body kinematics
information. Human silhouette data, in every view, is typically the main cue used to

reconstruct the 3D shape of a performer. This procedure is referred as shape-from-

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



silhouette and consists of intersecting multiple image silhouettes, by back-projecting
them into the 3D space, to obtain a reconstructed 3D volume. The reconstructed volume
is usually represented using voxel data which is the logical Cartesian extension of a pixel
in 3D. Almost all recent markerless applications [16-23] adopt this paradigm because it
simplifies the kinematic analysis and because it yields to a less restrictive human posture
analysis. With the latest advances related to computer technologies, some of these

implementations even perform in real-time [18, 22].

2.2 Analysis of Markerless Human Motion Capture Applications

The goal of this research project is the development of a markerless motion capture
application to remove the need for subjective inspections of the captured motion (manual
playback of a video stream) and to remove the cumbersomeness and high-cost issues that
make marker-based solutions inadequate for a variety of applications. In the previous
section, two paradigms were proposed related to markerless solutions. Our
implementation utilizes the shape-from-silhouette paradigm because it is well
acknowledged to offer better potential for full 3D human kinematics extraction than the
paradigm based on multiple images analysis. In this section, a high-level review of
several recently developed markerless systems is presented. Special emphasis is put on
specific flaws admitted by those implementations thus justifying the need to pursue

research in this area.

Mikic et al. [16, 17] proposed a system to track the human body using binary
shape-from-silhouette. The resulting shape is represented from the subdivision of the
working volume into a set of small voxels which contain a binary occupancy
classification state: background or foreground. Human posture estimation and tracking is
fully automated and does not require any manual initialization in the sense that the
performer is not required to adopt a specific starting posture. However several
constraints are imposed by the system. The performer is required to wear tight clothing

that must be of a distinct color. This constraint is used to simplify the extraction of

11
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human silhouettes from the background. The working volume is totally empty and
human postures are kept simple to remove any ambiguity problem that occurs with

complex and self-occluding postures.

Cheung et al. [18] proposed a similar approach which is also based on binary
voxels. Human silhouettes are computed using a background subtraction technique. A
model of the background (the empty scene) is first gathered for each view. When the
performer enters the volume of interest, the background model is subtracted from each
image view such that pixels differing from the original model are classified as silhouette
pixels. This removes the monochromatic clothing restriction but forces the background
to remain static throughout the entire acquisition. The room’s lighting also needs to
remain constant throughout the video recording. As for the previous system, this
implementation is also limited to simple human postures, but can operate in real-time. In
a later iteration [19], color information is incorporated to the volumetric voxel model at
the expense of removing the real-time functionality. Indeed, the voxel coloring scheme
implemented for this system is highly demanding computationally, but it was found that

color information can help resolving ambiguities within complex human postures.

The idea of incorporating color to volumetric models, in addition to the occupancy
information, has been further investigated in the work of Kehl et al. [20, 21]. In their
system, a fast voxel coloring scheme is proposed. It is not as precise as the coloring
scheme of Cheung et al. [19], but it is less demanding computationally because it does
not require multiple passes through the entire voxel data. In addition, image edges are
incorporated as a third cue to increase the overall robustness of human posture analysis.

However, no metrics are proposed to evaluate the beneficial impact of this third cue.

Very recently, Caillette [22] proposed a real-time motion capture implementation
which utilizes both voxel occupancy and coloring cues. To achieve a real-time system,
many tradeoffs had to be made which makes this system unsuitable for most real-world
applications. Among other things, this system utilizes only a few unsynchronized camera

sensors to reconstruct the full human body and their positioning is highly restrained

12
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because they are registered using a simple and restrictive multi-camera calibration
technique. The voxel coloring scheme is also less accurate than the scheme of Kehl et al.

[20] and requires a manual initialization.

Voxel coloring is a neat and logical addition to voxel occupancy information.
However, it remains unclear what is the limit of disambiguation that can be achieved
through voxel coloring especially because of inherent variations in clothing styles: short
versus long sleeves, dress versus shorts or pants, etc. Sundaresan [23] developed a
volumetric segmentation scheme that transforms binary voxel data into the Laplacian
Eigenspace. This scheme manages to separate and classify voxels in 6 major body parts:
head, torso, left arm, right arm, left leg, and right leg. Results are very promising
considering that only binary voxel data is used. However more testing is required

especially with complex human body postures.

This analysis highlighted some drawbacks that are recurrent in all of these
implementations and which prevent markerless solutions to make cumbersome marker-
based applications obsolete. In particular, we denote that in all of these systems, many
simplifications are imposed on the working environment to facilitate the recognition of
the human body within full frames of video. Furthermore, current markerless systems
can only capture simple human postures unlike marker-based systems. The purpose of
this research project is to overcome specific flaws related to markerless systems by
improving the robustness of a specific set of activities which are reviewed in depth in the

upcoming sections.

2.3 Multi-Camera System Design for Motion Capture

Multi-camera system design is the first topic which is discussed in this thesis. The
design of a multi-camera system is important because it can impact the quality of the
input video data and thus has effects on all subsequent modules of the system.

Surprisingly, this particular issue is often overlooked in most systems described in the
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literature. Typically, this topic is only discussed in systems that claim to operate in real-

time.

The original system of Cheung et al. [18] operates in real-time by distributing the
work over several computer platforms. Each camera is connected to a separate computer
node which has the obvious task of acquiring raw frames of video but also serves the
purpose of extracting human silhouette information. Silhouette extraction is a single-
view operation, which can be naturally parallelized onto several computational nodes for
the case of multiple concurrent image views. Distributed binary silhouettes are
efficiently compressed using bitmasks and transferred to a master computer. This master
computer performs the actual silhouette reconstruction, the posture analysis and the
displaying of results. Without the display unit, the system can support a frame rate of 16
frames per second (fps) which can be considered as acceptable for a subset of motion

capture applications.

Doubek et al. [24] proposed a similar system implementation where silhouette
extraction is performed on several computer nodes and is separated from the 3D analysis.
In addition, the problem of inter-camera synchronization is discussed in depth. Frames of
video are aligned asynchronously using a software trigger but that remains inaccurate
due to communication latencies between the multiple acquisition nodes. All cameras are
color calibrated in software [25] to ensure adequate uniformity among views and to
obtain uniform voxel data coloring. This software calibration replaces the auto-
calibration feature provided by most camera manufacturers because adjusting
dynamically the calibration based on the evolving content of a scene can compromise
many image processing algorithms and, in particular, almost all practical silhouette

extraction implementations.

Unlike Cheung et al.’s [18] and Doubek et al.’s [24] systems, which are distributed
over several computer nodes, Caillette [22] attempted to develop its real-time system
using a single acquisition node. However, with the use of only one computer, the number

of cameras is limited and cannot be extended. Unfortunately, volumetric reconstruction
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using shape-from-silhouette requires enough camera views in order to be precise.
Inconsistencies are also denoted in the execution time calculations provided in his work.
Indeed, we can observe that each module of the proposed system, when treated
separately, can operate in real-time at an acceptable frame rate (i.e. 15 fps). However,
when all modules are concatenated together, the system is apparently not capable of
supporting an acceptable frame rate. On the other hand, frame synchronization is avoided
by the fact that all cameras are connected to a single acquisition node. Thus, the maximal
variation in time (jitter) for a group of frames is bounded by the frame rate duration

which can be attenuated by forcing cameras to operate at higher frame rate.

2.4 Multi-Camera Calibration

Camera calibration is an essential step in many computer vision algorithms and
especially those that require the fusion of data acquired from multiple cameras or,
equivalently, multiple viewpoints. This is strongly the case for applications dedicated to
3D human motion capture. Such applications require a multi-camera setup composed of
at least 5 to 10 cameras to achieve a fairly complete reconstruction. The reconstruction of
a reliable 3D model of the human body is only made possible assuming accurate
knowledge about the pose of all cameras involved in the system. Camera calibration is
the second major topic covered in this work. The following sections present a detailed

analysis of current camera calibration methodologies.

2.4.1 Modeling the Behavior of Cameras

The goal of camera calibration is to allow a systematic mapping of any 3D point, in
an arbitrary working volume, to its 2D projection, in the image plane of a camera. Before
discussing the actual problem of camera calibration, a camera model first needs to be
established in order to encapsulate the behavior of cameras into a finite set of parameters.
Tsai [26] separated the camera behavior into two sets of parameters: the intrinsic and

extrinsic camera parameters. Intrinsic parameters are used to model the actual
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perspective transformation required to map any 3D point to its 2D camera projection.
Extrinsic parameters are concerned about the estimation of the position and orientation

(registration) of a camera with a global coordinate system.

Intrinsic Camera Parameters

To model the intrinsic camera behavior, Tsai [26] based his analysis on the perfect
pinhole camera model, shown in Figure 2.1. A 3D frame (Rcam) is attached to the optical
center of the camera and corresponds to the camera frame. A 2D frame (R;y) is attached
at the intersection of the optical axis (Z..m) With the image plane. This frame is then
translated to the top-left corner of the image plane (Rpixer) such that projected points are

expressed in pixel coordinates.

Opixel
Xpixel
Ypixel
Ocam . pue Zcam
Oim
Xcam L ‘
Yi
Pcam
Xim
v Ycam

Figure 2.1. Camera model for intrinsic camera calibration

The perspective projection (Pim) of any 3D point (P..m) can be found using 5
intrinsic camera parameters presented in the form of a 3x3 intrinsic matrix as per
equation (2.1). In equation (2.1), f is the lens focal length, s, and sy are the effective pixel
sizes and (Ox, Oy) is the pixel position of the image center (Oim).
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With the knowledge of K, the perspective projection, Piy, can be found for Peymy,
and expressed in pixel coordinates, using equation (2.2) followed by equation (2.3).
Careful readers may notice a potential division by zero in the case where x3 = 0.
However, it is trivial to show that this case only happens if ¢, = 0. In such case, Peam

would be located behind the image plane and thus is irrelevant.

xl xcam
x2 =K ycam (2.2)
x3 anm
X X, /X
P = pixel | _ 1/ 3]
" [ypixel} |:x2/x3 2:3)

Extrinsic Camera Parameters

Because the exact location of the optical center is a virtual point in space, the
camera frame is intangible. For convenience, it is often desired to align the camera frame
to a meaningful 3D coordinate system. The transformation linking a camera frame to a

world frame is illustrated in Figure 2.2.

Zcam

Pworld

RT

Xworld

Zworld

Figure 2.2, Extrinsic camera transformation graph

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This 3D transformation is expressed using a 3x3 rotation matrix (R) and a 3x1

translation vector (T) that are referred as the extrinsic camera parameters:

h Ny N t,
R=\n n, ny| T=|t, 24
y I Iy L

A 3D point defined with respect to a world reference frame can be expressed with
respect to the camera frame using:

Pam =R-Popy +T (2.5)

In summary, any point defined with respect to a world reference frame is first
transformed to be expressed with respect to the camera reference frame using the
extrinsic R and T parameters and equation (2.5). Then, the transformed 3D point Pcam, is
projected using the perspective transformation defined by the intrinsic matrix K and

equation (2.2) followed by equation (2.3).

Lens Distortion and Other Extensions

Up to this point, extrinsic and intrinsic camera behaviors have been modeled and,
therefore, any 3D point described with respect to a tangible 3D coordinate system can be
first transformed and expressed with respect to an intangible camera frame and finally
projected into the camera’s image plane. This latter part is achieved assuming a perfect
pinhole camera behavior. Unfortunately, this assumption is invalid since camera lenses
introduce various forms of distortion. The most typical form of lens distortion is the
radial distortion. Tsai [26] introduces, into his model, two additional parameters to
compensate for the radial distortion in the x and y directions. More recent models also
compensate for tangential distortion [27-29] which is caused by imperfect centering of
the lens surfaces. Zhang [30] further extended the aforementioned camera model by the
introduction of a skew coefficient used to define the angle between the two image axes.
However, Bouguet [29] reports that rectangular pixel (zero skew) is an acceptable

assumption nowadays.
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Up to this point, the full camera behavior has been modeled by a set of intrinsic and
extrinsic parameters as well as few lens distortion coefficients. The purpose of camera
calibration consists of the development of automatic techniques to accurately estimate
those parameters: the K matrix of equation (2.1), the R and T matrices of equation (2.4)
and, generally two to six coefficients for lens distortion. In the literature, those
techniques differ, by their complexity and methodology, according to the number of

cameras to be calibrated.

2.4.2 The Calibration of a Single Camera

The full calibration of a single camera has been widely covered in the literature.
The general idea is to collect the position of man;I 3D points and their corresponding
position in the 2D image plane. Based on these matches, both the intrinsic and extrinsic
parametefs can be estimated. To acquire those matches, specially designed calibration
patterns need to be built (see Figure 2.3). Both Tsai [26] and Zhang [30] used square
landmarks as per Figure 2.3a. The corners of each square landmark are used as
calibration points. Nowadays, disconnected square landmark are discouraged [29, 31]
because they tend to erode in images taken with lenses that are slightly out-of-focus,
therefore leading to inaccurate pixel position estimations. Heikkild er al. [27] resolved
this issue by using the center of circular landmarks, as shown in Figure 2.3b, as
calibration points. However, detecting the actual center of a circular landmark, in an
image, is not trivial because of deformations introduced by perspective projection and,
thus, because of the distinction that needs to be made between the “center of a projected
circle” and the “projection of a circle’s center”. A solution often recommended in
practical implementations is the use of a checkerboard pattern [28, 29], as per Figure
2.3c, because corner extraction is simpler and checkerboard landmarks do not suffer

from the erosion of disconnected square landmarks.
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Figure 2.3. Example of 2D calibration patterns

Tsai [26] mentioned that a better accuracy is obtained when the calibration points
are not all co-planar. This can be achieved using a 3D calibration structure (such as the
calibration cube of Figure 2.4) but such structure is more complex to build and is not

easily scalable.

Figure 2.4, The design of a (20 cm)® calibration cube

When only the intrinsic parameters need to be found, a very elegant solution is
proposed again by Tsai [26] and later refined by Zhang [30]. Multiple views of a single
2D calibration pattern, under various poses, are taken and used for the calibration. While
the extrinsic parameters will change between each view, the intrinsic parameters will
remain constant. This approach provides very precise intrinsic parameter estimation
because a large number of calibration points can be obtained simply by introducing

additional views of the calibration pattern. Furthermore, the conception of a 2D
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calibration pattern is more convenient than that of a 3D calibration pattern. If required,
extrinsic parameters can be estimated as a supplementary step afterward, using one view

of either a 2D or 3D calibration pattern.

2.4.3 The Calibration of Two Cameras

Similarly to the case of a single camera, it is possible to achieve full camera
calibration of a two-camera setup using a classical calibration target. However, if the two
cameras have a large baseline or large rotation, it may become difficult to fit a large
calibration pattern in both camera views simultaneously [32]. Fortunately, most stereo-
vision applications only require the relative positioning between two cameras, rather than
the absolute alignment of the cameras with a tangible 3D coordinate system. Hartley and
Zisserman [33] derived a technique to estimate the extrinsic relationship between two
cameras using epipolar geometry and prior knowledge of the cameras intrinsic
parameters (i.e. using Zhang’s multi-frame approach independently on each camera).
This technique consists of decomposing a Fundamental matrix, F, into a stereo rotation
matrix and translation vector. The main advantage of this technique is that the F matrix
between two views is easy to compute as it only requires image correspondences rather
than matches between 3D world points and 2D image points. With a known F matrix,

extrinsic calibration is extracted as follows:

1) The Essential matrix (E) is calculated from the F matrix using equation (2.6). K;
and K are the intrinsic matrices for the first and second cameras respectively. Fy,

is the F matrix linking the first camera to the second camera.
E=K; F, K] (2.6)
2) The E matrix is then decomposed using a Singular Value Decomposition (SVD)

and has the following form:

E=U-S-V"' 2.7
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In equation (2.7), U is the 3x3 left orthogonal matrix and V is the 3x3 right
orthogonal matrix. The resulting 3x3 singular-value matrix (S) contains only two
non-zero and equal singular values according to the properties of the essential

matrix [34].

3) From the SVD of E, the extrinsic parameters for both cameras can be obtained
with respect to the first camera. The extrinsic parameters for the first camera are
simply an identity rotation matrix (no rotation) and a null translation vector
(0,0,0). The extrinsic parameters for the second camera are found up to a four-
fold ambiguity (two possible rotations and two possible translations) and up to a

scale factor (unity translation vector) such that:

R, =UWVT and R,=UW"V" (2.8)

T, =+u; and T, = —u, 2.9

In equations (2.8) and (2.9), u3 is the third column of U, and W is the following

orthogonal matrix:

|
—

(2.10)

i
S = O
(== R ]
-0 O

Mathematical proofs of this decomposition are provided in Hartley et al. [33], but
are outside the scope of this discussion. In section 4.3.3 of this thesis, a method is
developed to resolve this four-fold ambiguity. To resolve the scale factor ambiguity, an
absolute measurement is required. For example, the absolute measured distance between
two matching features in a scene can be used to resolve this scale ambiguity. A solution

to this issue is proposed in section 4.3.7.
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2.4.4 The Calibration of a Generic Multi-Camera System

The calibration of a generic multi-camera system is the most complex case.
Intrinsic parameters computation remains simple because it can be performed
independently for each camera by applying Zhang’s multi-frame approach described at
the end of section 2.4.2. However, precise extrinsic registration of multiple cameras is

very challenging, especially when free camera positioning is permitted.

Complex calibration rigs have been proposed [22, 32, 35] but several drawbacks
can be observed. Caillette [22] proposed to use a single 2D calibration rig to perform the
calibration of his multi-camera system. While this calibration approach is simple, it is
prone to inaccuracies because all calibration points are co-planar. It also requires all
cameras to see the full calibration rig, which imposes major constraints on the
positioning of the cameras. Moreover, during the calibration procedure, the working
volume must be completely empty as the calibration rig will occupy most of the floor. In
order to overcome the coplanarity constraint, Rander [35] suggested to use calibration
bars mounted on tripods. The bars are translated vertically and horizontally in the
working volume to obtain full coverage and non-coplanar points. This approach is
however very cumbersome as it requires numerous manipulations. It also imposes an
empty working volume. Drouin et al. [32] suggested a method that computes pair-wise
camera relations using multiple views of a 2D calibration rig. Pair-wise relations are then
unified into a consistent camera graph. This approach also eliminates the coplanarity
limitation but lacks flexibility for cases where cameras are orthogonal or are separated by

large baselines. It is however a first step towards novel approaches discussed in the next

paragraph.

Because of important problems with classical methods for multi-camera
calibration, new approaches were recently investigated [36-38]. The strategy in all of
these approaches is to first find a coarse estimate of the cameras registration which is

then refined through an iterative method. To obtain the initial estimate, all of these
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methods use a single visible feature point as the calibration target. The latter is being
waved in the workspace to create a cloud of 3D calibration points. Pair-wise
relationships between cameras are estimated and then, relations linking all cameras to a
reference camera are found. Chen er al. [36] applied an extended Kalman filter
iteratively to perform the final optimization. However, more accurate results are obtained
by Ihrke et al. [37] and by Svoboda et al. [38] who use a bundle adjustment [39] as the

final optimization step.

2.5 Volumetric Reconstruction

The full calibration of a camera network enables shape-from-silhouette
reconstruction and is the last aspect discussed in this thesis. This section introduces the
concept and limitations of shape-from-silhouette reconstruction but also surveys recent

advances regarding optimization and robustness.

2.5.1 Concept of Shape-From-Silhouette

Shape-from-silhouette is a technique commonly used to compute a voxel map
based on multiple 2D images of a targeted foreground object (in our case, a human
performer). The main advantage of using shape-from-silhouette is that only silhouette
data is required. This technique does not require that a scene contains sufficient texture

as in, for example, feature-based stereo analysis.

A high-level block diagram of the shape-from-silhouette method is presented in
Figure 2.5. Color images of a performer are acquired synchronously from all cameras. In
each color image, the silhouette is extracted from the background resulting in a binary
image where pixels are either classified as “foreground”, for those that pertain to the
human performer, or “background” otherwise. Silhouettes are back-projected in the 3D

space using the camera calibration data. The intersection of all silhouettes results in the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



computation of the performer’s visual hull, i.e. the volume occupied by the subject (in

Camera
Calibration Data

our case, the reconstructed human model).

Color ] Binary i
[ |7 —*{ image Acquisition clorimege gi?;tézgﬁ inary image
— - Color image Silhouette Binary image Silhouette Reconstructed
Dj image Acquisiton Extraction Intersection Visual Hull
Colori ] o
[ ]2 ——»{ image Acquisition ———— Ei?ri‘éﬁﬁi nery image

Figure 2.5. High-level block-diagram showing the major steps

required for shape-from-silhouette reconstruction

In Figure 2.6a, a silhouette is back-projected in the 3D space to form a silhouette
cone. In Figure 2.6b, two silhouette cones are intersected. Obviously, the intersection of
only two silhouette cones is not sufficient to obtain a meaningful reconstruction. When
more silhouette cones are added to the model, the resulting volume intersection is
smaller and, thus, the reconstructed shape approaches the original shape. After a
sufficient number of views are incorporated, and well balanced to surround the object of
interest, adding extra views results in very minimal improvements to the visual hull

reconstruction.
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Figure 2.6. Basics of shape-from-silhouette volumetric reconstruction.
(a) A silhouette cone is created by back-projecting all foreground pixels into the 3D
space. (b) The object’s visual hull is computed from the intersection of multiple

silhouette cones of the same foreground object taken from different point of views.

2.5.2 Limitations of Shape-From-Silhouette

Laurentini [40] studied the problem of shape-from-silhouette reconstruction from a
theoretical point of view. He formally defined the term visual hull as the closest
approximation of a real object that can be obtained using shape-from-silhouette. This
closest approximation is only achieved when an infinite number of viewpoints is used.
However, Laurentini observed that even when all possible viewpoints are used, the
object visual hull can still differ from the original object. Indeed, it was found that the
visual hull of an arbitrary object is always a volume included within the range defined by
the real object volume and its convex hull' as per equation (2.11). For the special case of

convex shapes, perfect reconstruction is theoretically possible as per equation (2.12).

! The convex hull of a volumetric object is defined as the smallest convex volume that includes the 3D

shape. If the 3D shape itself is convex, then its convex hull will admit the exact same volume.
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GenericObject < VisualHull(GenericObject) < ConvexHull(GenericObject) . (2.11)
ConvexObject = VisualHull(ConvexObject) = ConvexHull(ConvexObject) . (2.12)

From this analysis, we can deduce that shape-from-silhouette is imperfect in the
presence of concave shapes. Figure 2.7a illustrates, using a simple 2D example, the
problem that occurs when reconstructing a concave shape. Figure 2.7b and Figure 2.7¢
illustrate two examples of 3D concave shapes. As opposed to 2D shapes, only a subset of
3D concave regions cannot be reconstructed using shape-from-silhouette depending on
the existence or not of a viewpoint that can detect the concavity. In the example of
Figure 2.7c there is a detectable concavity because a view in front or behind the two
cylinders would easily detect the concavity. In spite of the flaws of shape-from-silhouette
in presence of concave shapes, this technique remains suitable for the reconstruction of
the human body because the concavities admitted by an articulated human are generally

similar to the one of Figure 2.7c.

2D concave region .

Undetectable Detectable
3D concave region 3D concave region

() (b) ()

Figure 2.7. Examples of 2D and 3D concave regions

Because the use of an infinite number of viewpoints is impossible in practice, it
became common, in the literature, to use the term “visual hull” to designate the outcome
of a shape-from-silhouette reconstruction using a finite, but sufficient, number of

viewpoints. For the case of a finite number of viewpoints, Laurentini [41] observed that
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the quality of visual hull reconstruction depends on the viewpoint locations. Ideal
viewpoint locations depend on the nature of the targeted object and on its orientation.
Rules exist to determine the next best view for a particular object to reconstruct and thus
can help minimizing the number of required camera sensors. Unfortunately, this
observation does not hold for dynamically evolving objects and therefore is irrelevant for
motion capture. Instead, high quality reconstruction of an evolving and deformable
human body is usually achieved by introducing redundancy by means of using a larger

number of viewpoints.

2.5.3 Practical Shape-From-Silhouette Implementations

From a practical point of view, the visual hull of a performer can be represented
using simple equal-size voxel data. A standard procedure to compute shape-from-
silhouette voxel data is presented in Algorithm 2.1 and is used in many vision-based
motion capture applications [16-21]. A predefined working volume is subdivided in
voxels at a desired resolution. Each voxel corresponds to a small volume within the
whole working environment. The voxel map is then traversed sequentially. For each
voxel, an occupancy test is performed. The goal of such test is to detect whether a voxel
pertains to the foreground object or if it belongs to the background. A voxel occupancy
test consists of projecting the voxel in every camera view using pre-determined camera
calibration parameters. A voxel is labeled as foreground only if the voxel projects over a
region that pertains to the targeted silhouette in all image views. Consequently, a voxel is

labeled as background if it falls over a background region in at least one image view.

A hierarchical, multi-resolution, shape-from-silhouette is also widely used in the
literature [42] and a practical multi-resolution implementation is given in Algorithm 2.2.
The voxel map is instead represented using an octree. Each octree node is labeled either
as background, foreground or edge. A node is classified as an edge if, in at least one
view, its projection lies over an image region pertaining to both foreground and

background, and, in all the other views, the voxel projects over a foreground region.
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Edge nodes are typically subdivided into smaller nodes and re-evaluated unless the
maximal resolution is achieved. Multi-resolution octrees require less memory and are, in
general, faster to compute than single-resolution voxel maps. However, octrees are more
difficult to post-process. For this reason, single resolution voxels are often preferred in
motion capture applications although Caillette’s implementation [22] consists of a

hierarchical voxel reconstruction scheme that avoids the use of a tree data structure.

Algorithm 2.1. Single-resolution shape-from-silhouette algorithm

allVoxels[] = InitVoxelMap(desiredResolution);
for all voxel in allVoxels[]
voxel.Classify(foreground);
for all cameras
imageProj = CalculateVoxelProj(voxel, camera.GetCalibration());
state = EvaluateVoxelProj(camera.GetImage(), imageProj);
if (state == background)
voxel.Classify(background);
break; // no need to evaluate other camera views
end if
end for
end for

Algorithm 2.2. Multi-resolution shape-from-silhouette algorithm

allVoxels[] = InitOctree(coarseResolution);
stack = InitStack();
stack.Push(allVoxels[]);
while(!stack.ISEmpty())
voxel = stack.Pop();
globalState = foreground;
for all cameras
imageProj = CalculateVoxelProj(voxel, camera.GetCalibration());
state = EvaluateVoxelProj(camera.GetImage(), imageProj);
if (state == edge && globalState == foreground)
globalState = edge;
else if (state == background)
globalState = background;
break; // no need to evaluate other camera views since voxel is empty
end if
end for

voxel.Classify(globalState);
if (globalState == edge && voxel.depth() < MAX_DEPTH)
allChilds[8] = voxel.Subdivide();
stack.PushMultipleVoxels(allChilds[]);
end if
end loop
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2.5.4 Enhancing Practical Shape-From-Silhouette Implementations

Many enhancements to the classical voxel reconstruction algorithm have been
proposed in the literature. To accelerate the speed of reconstruction, the use of lookup-
tables that pre-compute the numerous voxel projections is very attractive but requires a
significant amount of memory. Kehl et al. [21] suggested maintaining a reverse lookup
table that links each pixel to a collection of voxels affected by this pixel. This allows
incremental updates, in time, of the voxel data. Cheung et al. [18] proposed a sparse
voxel occupancy test (SPOT) to accelerate voxel classification. Only a fraction of the
pixels pertaining to a voxel projection are evaluated and used to determine the voxel

occupancy.

To increase the general accuracy of voxel models, Caillette [22] acknowledges the
fact that 2D silhouettes are often imperfect. He proposed the use of an “unknown” label
for silhouette pixel data and 3D voxel data classification. In a second pass, unknown
voxels are reclassified either as “foreground” or “background” based on the classification
of neighboring voxels. Sundaresan [23] observed that foreground pixels misclassified as
background have a more negative impact than background pixels misclassified as
foreground when computing the intersection of multiple silhouettes. Indeed, a voxel
projection misclassified as foreground will most likely be cancelled out by another view.
However, a voxel projection misclassified as background will result in the actual voxel
to be labeled as background. He proposes to relax the voxel classification criteria for
more robustness at the expense of accuracy. In his implementation, at least two or three
voxel projections, depending on the total number of views, need to lie over a background

image region in order for the voxel to be classified as background.

2.6 Chapter Summary

This chapter presented a review of state-of-the-art markerless human motion

capture applications. Markerless solutions remain far from real-world applications
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because of their lack of robustness in many aspects of the whole problem. Extended
reviews were proposed for specific topics of interests of this thesis: multi-camera system
design, multi-camera calibration and volumetric reconstruction using shape-from-

silhouette.
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Chapter 3. Reconfigurable Multi-Camera System Design

This chapter discusses the design of a reconfigurable multi-camera system which
can be used in a variety of multi-camera applications and especially for the proposed
application dedicated to human gesture monitoring in the context of piano-playing
performance evaluation. Designing a multi-camera system is not a trivial task because
many requirements need to be satisfied. Surprisingly, this topic is often avoided and even
neglected in most motion capture systems presented in the literature. Yet, improper
design can potentially lead to a sub-optimal multi-camera acquisition system. In Chapter
2, it was highlighted that proper system design is important especially for real-time
systems that need to operate at a reasonable frame rate. The aim of this project is not
focusing on real-time operation because robustness is privileged. However, adequate
system design remains important in order to present high-quality input video data to the

image processing (silhouette extraction) and 3D reconstruction modules.

This chapter attempts at resolving most of the flaws regarding multi-camera and
multi-computer system design for motion capture. This discussion is subdivided into five
main sections. The first section analyzes and highlights important camera hardware
requirements regarding markerless motion capture. In the second section, all individual
hardware components are interconnected, physically in hardware and logically in
software, in order to obtain a full multi-camera system. The third section explains the
frame synchronization mechanism used in our implementation. The remaining sections
discuss about the development and implementation of a high-level software package

designed to facilitate the interfacing of application layers with the camera hardware.
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3.1 Hardware Setup

3.1.1 The Acquisition System

Our acquisition system is shown in Figure 3.1. It is composed of 3 Pentium IV 3.40
GHz computers and 8 Point Grey Research® Flea2 IEEE1394b Firewire cameras. All
cameras are mounted to a reconfigurable structure. This structure allows free positioning
of cameras all around the workspace. The structure itself can be enlarged to
accommodate various sizes of working volume. The camera setup used to monitor the

gesture of pianist musicians occupies a volume of approximately 2.5 m x 2.5 m x 2.5 m.

Figure 3.1. The designed multi-camera acquisition setup
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3.1.2 Camera Hardware

The design of a sophisticated motion capture system with minimal constraints on
the environment requires high quality hardware. The decision of using high quality
cameras (PGR® Flea2), instead of cheaper webcams, is motivated by multiple factors,
which are detailed in Table 3.1. To monitor human activities with high precision, the use
of global shutter exposure is clearly a predominant requirement because it allows all
pixels to be measured simultaneously in contrast with a rolling shutter where the pixels
are measured sequentially line by line. The Flea2 cameras also allow multiple
mechanisms for multi-camera frame synchronization, which is essential especially when
cameras are distributed across multiple computers. These cameras can operate at a high
frame rate, 60 frames per second (fps) and therefore provide high flexibility in adjusting
the temporal resolution to match the speed of the motion to be captured. The frame
resolution is limited to 640x480 pixels but it is sufficient for the purpose of volumetric
reconstruction. Furthermore, cameras possess internal color calibration functionalities
and several pre-processing functionalities to enhance the quality of the acquired video.
Finally, the IEEE 1394b (FireWire b-type) bus speed allows for multiple cameras to be
connected to a single acquisition node at high frame rate thus helping to reduce the

global system cost and to increase the system’s mobility.

Table 3.1. Factors of influence in the selection of the camera hardware for motion capture

Cameras equipped with a global shutter are clearly advantageous to cameras
equipped with a rolling shutter especially for the purpose of accurate motion
capture. Indeed, a global shutter allows all pixels in a frame to be exposed
simultaneously in contrast with progressive and interlaced scan rolling shutters
where the pixels are exposed line by line sequentially leading to artifacts in the
presence of high motion. Interlaced rolling shutters are totally unacceptable
because even and odd scan lines are evaluated in two fields separated by half of
the frame duration.

The targeted working frame rate for our human motion capture system is
estimated at 30 fps. However, the capability of extending the frame rate to 60 fps
is desired for future work, especially to detect very fast and subtle (low
amplitude) movements.

A resolution of 320x240 is used in most motion capture applications because it
significantly reduces the computational cost of extracting the human silhouette in
Resolution each view. Furthermore, 3D voxel data is limited to coarse resolutions because
incorporating a third dimension imposes very high memory and computational
requirements and, thus, it becomes irrelevant to use higher image resolution.

Global Shutter

High frame rate
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Frames of video need to be precisely synchronized in order to ensure consistency
in time across all cameras. This is typically achieved using either an
asynchronous software or hardware trigger, or using special synchromzat:on
tools provided by the camera manufacturer.

Synchronization

Cameras need to be color-calibrated with respect to the lighting characteristics of
the working environment in order to improve the quality of the input video and,
thus, to facilitate subsequent motion capture tasks such as silhouette extraction
Color calibration and volumetric reconstruction. This can be done in software [25] although,
nowadays, many camera manufacturers offer advanced functionalities to
automatically adjust many of those parameters (exposure, gain, white balance,
etc) with minimal programming required.

The use of a faster bus speed, such as IEEE 1394b (800Mb/s), allows multiple
Bus Speed color cameras to operate on a single computer at high frame rate. The reader is
referred to Appendix A for detailed bandwidth requirement calculations.

3.1.3 Camera Lenses

For this project, we use fixed focal length lenses. The use of fixed focal length
lenses is advantageous because it allows the intrinsic camera parameters to be estimated
only once. However, fixed focal length lenses are not flexible and thus, they need to be
replaced if a wider or narrower field of view is desired. Lenses are selected individually

for each camera. They are chosen to best-fit the targeted human subject in each view.

Lateral cameras (c2, ¢3, c6, c7) as well as one top-view camera (c4) are equipped
with wide angle lenses (focal length = 3.5 mm) because they are located very close to the
position of the human subject. This type of lens allows a wide field of view even for
subjects close to the cameras. Wide angle lenses are useful for workspaces that are
restrained in size by physical constraints (wall, roof, etc.) which can considerably limit
the maximal distance that a camera can have from the subject. However, those lenses
have the disadvantage of introducing a significant amount of distortion. Figure 3.2
demonstrates the importance of distortion compensation especially when working with
wide angle lenses. The amount of distortion is clearly noticeable on the checkerboard
image of Figure 3.2a since lines on the pattern are not straight, especially for those far
from the image center. In Figure 3.2b, radial and tangential distortions have been
compensated [28] and we can notice that these lines are now perfectly straight. For the

case of natural images, the difference between the distorted (Figure 3.2¢) and undistorted
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(Figure 3.2d) images is visually more subtle. However, from a computer vision

perspective, lens distortion is critical for the quality of reconstructed 3D data.

(@ (b) © (d)
Figure 3.2. Lens distortion compensation applied on a checkerboard image and a natural image:

(a) and (c) are the original images, (b) and (d) are the undistorted images

The back-view cameras (cO and cl) are located further away from the tracked
subject and therefore can be equipped with 6mm lenses which provide a narrower field
of view but almost no distortion is introduced. Finally, the second top-view camera (c5)

also contains a 6mm lens and focuses on the pianist hands and forearms.

3.2 Architectural Design for a Multi-Camera/Multi-Computer System

The previous section individually listed the multiple components required by our
multi-camera acquisition system. The purpose of this section is to analyze how these
components interconnect and interact. The diagram of Figure 3.3 shows the full system
architecture. One or more cameras are expected to be connected to each acquisition node
(PC1-PC3). The main purpose of these nodes is to acquire and, if desired, pre-process
each stream of video separately. All acquisition nodes are daisy-chained by an
IEEE1394a link. This link is called the sync link and serves at synchronizing all
IEEE1394a and IEEE1394b buses across all nodes as will be detailed in section 3.3. All
nodes are also connected to a local area network such that they can freely communicate.
An additional computer (Main PC) is shown in this diagram and serves the purpose of
grouping together frames of video that occurred simultaneously and of merging the data
from multiple synchronized views to achieve 3D human gesture analysis. In the context

of an offline application, where the motion capture is performed only after the
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completion of the video acquisition, it is not necessary to use a separate computer for this

task.

c0 c1 c2 c3 c4 c5 cb c7
Node 1 Node 2 Node 3

Video Acquisition Video Acquisition Video Acquisition
ingle-View ingle-View ngle-View
Processing Processing Processing

IEEE 1394a cable
sync link

|EEE 1394a cable
sync link

Main PC

Frame Alignment
Multi-View Processing

Figure 3.3. Architecture of the multi-camera/multi-computer system

3.3 Multi-Camera Frame Synchronization

In section 3.1.2, it has been highlighted that global shutter exposure and frame
synchronization are two important requirements to achieve precise multi-camera human
gesture analysis. Accurate 3D gesture analysis not only requires all pixels within an
image to be spatially synchronized, by the use of a global shutter, but also across all
views, using inter-camera synchronization. Otherwise frames of video from multiple
sources may be offset in time, as demonstrated in the example of Figure 3.4, resulting in
inaccurate location of various body parts in the 3D space. Thus, the purpose of frame
synchronization is, by analogy, to ensure that all pixels, across all cameras, are exposed
simultaneously. Our multi-camera system is synchronized in two distinct stages. The first
stage is to ensure exposure synchronization across all cameras. The second stage consists
of grouping frames that occurred at the same instant of time such that they can be

processed together.
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Camera 1 | Frame 1 exposure | Frame 2 exposure [ Frame 3 exposure ]
Camera 2 | Frame 1 exposure | Frame 2 exposure | Frame 3 exposure |
Camera 3 Frame 1 exposure | Frame 2 exposure [ Frame 3 exposure |

Camera 4 ! Frame 1 exposure | Frame 2 exposure | Frame 3 exposure

Figure 3.4. Inter-camera delays that can occur in an unsynchronized camera network

3.3.1 Inter-Camera Frame Exposure Synchronization

Multiple methods exist to ensure adequate pixel exposure synchronization across
all cameras of a network. In particular, the Flea2 cameras can be synchronized using
either an asynchronous software or hardware trigger. Alternatively, Point Grey
Research® provides the MultiSync software which has the sole purpose of synchronizing
multiple 1394a and 1394b Firewire buses such that the cameras can operate

synchronously in free-run video mode.

The asynchronous trigger approach

A common approach to achieve frame synchronization is via an asynchronous
trigger. This approach is supported by a wide range of camera models. In this mode,
cameras will measure and output a frame of video only upon reception of a trigger
signal. Such trigger signal can either be a software signal or a hardware signal. The
software trigger approach is simple, low-cost and does not require any extra wiring to the
cameras. This approach is accurate when all cameras are connected to a single computer
but becomes inaccurate when cameras are distributed among many computers because of
inter-PC communication latency. Indeed, significant synchronization inaccuracies (10-20
ms) are reported in the ViRoom system [24]. Furthermore, this approach cannot
guarantee a constant frame rate because of unknown and variable overheads in both the
camera driver and communication layers. To account for these drawbacks, it is possible
to synchronize all cameras using a hardware trigger. With this approach, a hardware
pulse is sent sirhultaneously to all cameras at a desired frequency (the desired frame
rate). The synchronization using this approach is very accurate but requires the

generation of a pulse and additional cabling.
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An additional limitation related to asynchronous triggering is that the cameras are
forced to operate in an asynchronous mode (snapshot) rather than in free-run video
mode. In asynchronous mode, many camera models are not capable to operate at the
maximum frame rate. While in free-run video mode, many camera models are optimized
to overlap the shutter exposure of the upcoming frame with the data transmission of the
previous frame as illustrated with the timing diagram of Figure 3.5. A penalty of up to
half of the maximal frame rate may occur when a camera operates in an asynchronous

mode, depending on the camera model.

Trigger received Trigger received

4 A

Asyr;zt;:’c;nous Frame 1 exposure | Frame 1 tx | Frame 2 exposure | Frame 2tx | |

Free-:rl;lgd(;ndeo) | Frame 1 exposure Frame 2 exposure Frame 3 exposure |

Figure 3.5. Typical timing diagram of a camera operating in asynchronous and free-run video mode

The Point Grey Research® MultiSync solution

Because there is a clear advantage in achieving synchronization in free-run video
mode, Point Grey Research® provides their MultiSync application. This small
application can be used to synchronize multiple IEEE1394a and IEEE1394b buses across
multiple computers. The only constraint with this approach is that the MultiSync
application is only compatible with products that are manufactured by Point Grey
Research®, This constraint is however surpassed by many advantages which justifies the

use of the MultiSync software for our multi-camera system:

1. Complexity. This method does not require any additional and cumbersome wiring to
the cameras. Only the acquisition computers need to be linked together, with a

Firewire connection.
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2. High frame rate. Since the camera operates in free-run mode, the cameras can

operate at their maximal frame rate.

3. Synchronization precision. The MultiSync software assigns a timestamp to each
received frame of video to assess the accuracy of the synchronization.
Experimentally, we observed that the timestamp value of two or more synchronized
frames admits a difference of at most 1 timestamp tick. It was also observed that two
consecutive frames of video differ by 267 ticks when the working frame rate is 30
fps. With this knowledge, the duration of a single tick can be calculated as follows:

1 frame . Isecond _ 0.12ms
267tick 30 frame tick

tick _ duration =

3.1)

From these computations, we estimate the precision of the frame synchronization to
be +0.24 ms (twice the tick duration) although there is no clear way to verify the

exactitude of the timestamp values assigned to each frame.

To verify the frame synchronization we performed a simple test, shown in Figure
3.6, inspired from Doubek ef al.’s work [24], where two synchronized cameras monitor a
clock running on a computer screen. In this test, a very low frame rate (1.875 fps) was
used because of the low timer resolution (10 ms) and because the refresh rate of the
monitor influences the results. Nevertheless, when the cameras are not synchronized, the
offset between two frames can be of at most 0.26 seconds (half of the frame duration). In
the example of Figure 3.6, the offset is of 0.10 seconds (100 ms). With synchronization,
the timer indicates the exact same time even if the cameras operate on two separate
computers. It would be interesting to test the synchronization with a finer timer

resolution but it would require costly equipment.
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Without Synchronization With Synchronization

Cam0
(on PC1)

Cam1
(on PC2)

Figure 3.6. Importance of frame synchronization in multi-camera applications

3.3.2 Frame Buffering and Alignment

Having ensured that all pixels in all cameras are exposed in a synchronous manner,
an additional step is required to group together synchronous frames of video. This is
achieved by comparing the timestamp values embedded in every received frame of
video. Our proposed strategy relies on the use of multiple queues where received frames
of video can be buffered. There is one queue per camera. The alignment process
evaluates and compares the timestamp values of the front element of every queue. The
frame with the oldest timestamp value is dequeued and processed along with all other
frames which have a timestamp value equal to the oldest frame. If a frame has a
timestamp value that is more recent that the frame with the oldest timestamp value, then

this frame remains in the queue and is delayed until the next operation.

An illustration of the proposed frame alignment procedure is shown in Figure 3.7.
In this example, timestamp values are virtually represented using simple sequence
numbering (1, 2, 3, ...). In the first iteration, the oldest timestamp is contained in Cam3
queue and is processed right-away, while the queues for Caml and Cam2 remain

unmodified. Iterations 2 and 3 illustrate the standard scenario where the frames are
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matched in all camera views. In Iteration 4, the oldest timestamp (#4) is contained in
Caml and Cam3 queues, but Cam2 queue only contains timestamp #5. Therefore, we
conclude that frame #4 for Cam2 has been lost. Iteration 5 shows another special case
where the oldest timestamp (#5) is contained in both Cam1 and Cam2 queues but Cam3
queue is empty. We cannot conclude that timestamp #5 for Cam3 has been lost because
it could simply not have been received yet. The process therefore needs to wait until
Cam3 queue receives a new frame to continue. In iteration 6, new data has been received

and timestamp #5 is matched in all cameras.

i

Cam1 5 4 3 2 5 4 3 5 4
!

Cam2 5 3 2 5 3 5

Cam3 4 3 2 4 3 4
Iteration 1 lteration 2 Iteration 3
Cam1 5 6
Cam2 5 5 6
Cam3 6
lteration 4 lteration 5 Waiting! lteration 6

Figure 3.7. Illustration of the frame alignment process

This method assumes that the frames are enqueued in the same order that they were
received. When all cameras are directly connected to a same acquisition node, frames of
video are guaranteed to be received in order. Otherwise, when frames are acquired and

then transmitted to a main computer, a reliable communication protocol, like TCP, would
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normally be required. In a non-real-time motion capture system however, this alignment

procedure can be performed offline, once the video acquisition is completed.

3.4 The Design of a Generic Multi-Camera Software Framework

The previous sections elaborated on the architectural design and the
synchronization of a multi-camera/multi-computer acquisition system. Having resolved
those issues, the next logical step is to encapsulate low-level interactions with cameras,
into a flexible higher-level software framework. Thus, this section discusses the design

and implementation of a generic multi-camera software framework.

3.4.1 The Global Scheme

Figure 3.8 provides an overview of the designed software framework that is
targeted to execute on the hardware architecture presented earlier in Figure 3.3. This
framework is divided in two threads and can potentially be distributed across several
computers. A first thread (the acquisition thread) is responsible for acquiring raw video
directly from the cameras. This thread executes on every acquisition node (PC1...PCn).
Each received raw frame of video is converted, from YUV to RGB, and pre-processed
(single-view processing) if necessary before being written into its corresponding queue,
which is implemented using a circular buffer. There is exactly one circular buffer per
camera connected and they are all maintained on the main computer (the main computer
can be one of the acquisition nodes). A second thread is used to read buffered frames of
video out of the circular buffers according to the frame alignment procedure discussed in
section 3.3.2. Then a user supplied multi-view processing function is called, in real-time,
against each synchronized set of video frames. Throughout the remaining of this
discussion, the single and multi-view processing function will be simply referred as
callback functions. The length of the circular buffers can be parameterized and should be

large enough to account for variations in the execution time of the callback functions.
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Running on one or multiple Running on main computer

- |__acquisition nodes (PC1.n) | o {(MainPC)  Jrommme
Acquisition | Multi-View Processing
Thread | Thread
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- : "| Oriver i .
Camera 1 ™ y : Single-view
 processing
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Circular Buffer
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Driver ™ e Refad framgy processing
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: ' processing
Write frame/
timestamp

Figure 3.8. A multi-purpose software framework for real-time

processing of multiple synchronized video streams

For the example of human motion capture, it would be natural to implement the
silhouette extraction procedure as a single-view callback function executed locally on the
acquisition nodes (PC1...PCn) because this operation is independent from other views
and, therefore, parallelizable. Volumetric reconstruction and human posture estimation

would be executed as a multi-view callback function running on the main computer.
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3.4.2 Practical Implementation of the Software Framework

The implemented motion capture application is designed to operate offline mainly
because of high computational cost involved in extracting the human silhouettes in
complex scenes [9]. This eliminates the need for live inter-computer communication. To
validate the concepts proposed in the previous section, a stripped-down version of this
framework was implemented, for the specific case of a single acquisition node, to which
multiple cameras are connected, in order to avoid inter-computer communication
because it is outside the scope of this work. The only difference with respect to the
software design resides in the absence of a reliable communication protocol (like TCP)
to transfer the acquired images across multiple computers. This reduced implementation
remains advantageous because working at such a high-level of abstraction, using simple
callback functions to interact with cameras, eliminates the need to duplicate code that
pertains to low-level camera operations. On a side note, this implementation provides

good foundations for many real-time single-computer stereo vision applications.

In the achieved implementation, multiple cameras are attached to a single computer
which collects, in its main thread, frames from all cameras which are being written to a
circular queue along with their timestamp information. As per the designed framework,
frames are aligned in the separate thread, before calling the user-supplied multi-view
callback function. Missing frames are detected according to the mechanism introduced
earlier in section 3.3.2. In normal conditions, there should never be any missing data.
However, this is not true in practice. Indeed, few frames of video may be dropped during
the acquisition process for several reasons:

1) Frames can be dropped because the execution time of the user-specified
callback functions is too long for the frame rate at which new frames of video
are received. This case needs to be handled by the programmer, therefore
ensuring that real-time deadlines are respected (execution time < frame rate).

2) Frames of video can be missing because they were lost somewhere in the path

linking the camera to the IEEE1394 bus and finally to the computer’s internal
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memory. To avoid as much as possible this scenario, bandwidth limitations

everywhere along this path need to be taken into account (see Appendix A).

When a situation of missing data occurs, it is up to the programmer to decide how
these extraordinary situations will be handled:
1) The callback function can simply skip this incomplete group of frames.
2) The callback function can process this incomplete group of frames by ignoring
missing frames. |
3) The callback function may decide to skip or process this group of frames based

on the number of cameras for which data is missing,

For the purpose of volumetric reconstruction with a limited number of views (8
cameras), each viewpoint provides an important contribution to the reconstructed
volume. For this reason, we decided not to partially process incomplete groups of frames
(option 1). It should however be mentioned that cases of missing data are very rare (see
section 3.5.2) and that the implemented framework is versatile in being able to support

any of the three aforementioned alternatives.

3.5 Example of Application: Implementing a Video Recorder

The simplest use of this software framework is to record video sequences that can
be post-processed afterward. Throughout this project, the FleaMultiCamViewer
application (see Figure 3.9) was developed for that purpose. Frames of video, from
multiple cameras, are acquired, compressed and saved to a general-purpose hard-disk in
real-time on each computer separately. Table 3.2 lists a few requirements satisfied by our
application. The video recorder runs independently on all 3 acquisition nodes, each one
hosting at most 3 cameras. Frames that are collected among cameras attached to a same
node are automatically aligned according to the implemented framework of section 3.4.

At the end of the acquisition, concurrent video sequences are grouped to a single
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computer which performs a final frame alignment step to ensure time-consistency in

video sequences incoming from the multiple acquisition nodes.

Show a live preview
of all video sources

Camera detection

C ; XVID configuration
and configuration

Video format and
video duration

Multi-camera Single camera
video recording video recording

Figure 3.9. The FleaMultiCamViewer application is designed to

display and record video from multiple cameras concurrently

Table 3.2. Requirements for a multi-camera video recorder

In order to reduce the overall system cost, the FleaMultiCamViewer must be able to
record on a same FireWire adaptor from at least 3 sources of video at a targeted
resolution of 640x480 and a frame rate of 30fps. This is equivalent to a global
throughput of 90 fps at 640x480. Alternatively, it is possible to increase the number
of cameras attached to a single acquisition node by reducing the image resolution or
the frame rate.

It is impossible to write uncompress frames of video to a hard-disk at the specified
throughput (640x480@90fps). Video compression must therefore be used.
Interestingly, video compression will manage to reduce the amount of data that
needs to be written to disk to the expense of increasing the amount of computations
in achieving the actual data compression. Another expense associated with video
compression is the loss of quality. Thus, it becomes important that compressed video
remains of high quality both for perceptual reasons and because high compression
can compromise many image processing algorithms (including image segmentation).
Frame drops should be kept minimal. Sufficient buffering needs to be used to
account for exceptional hard-disk access latency that can occur unexpectedly due to
Frame drops other background tasks performed by the operating system. Overall, it is mandatory
that the average execution time of the callback function is below the operating frame
duration (33 ms when cameras operate at 30 fps).

Global throughput

Video quality
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3.5.1 Implementation of a Real-Time Video Recorder

Since the multi-camera video recording functionality is built according to the
framework discussed in section 3.4, a callback function needs to be developed which
sole task is to compress and write each received frame to its corresponding video file
(one per camera). Additionally, timestamp information for each received frame is written
to a text file. Video compression is achieved using the XVID encoder [43] with real-time
settings. Because real-time settings are used, only low compression can be achieved
without altering the quality of the video. Experimentally, it was found that a quantization
ratio of 4.0 is suitable to provide high quality video with reasonable size of data written
to the hard-disk. Approximately 3 seconds (100 frames) of video buffering (size of the
circular buffers) is used to account for sporadic hard-disk preemption that can occur by

the operating system.

3.5.2 Examples of Video Recording Sequences

To validate the implemented video recorder, several sequences were acquired on
two distinct acquisition nodes, each hosting 3 cameras. Both static and dynamic
sequences were tested because it can affect the amount of data to be written to disk.
Static video recording was achieved by recording live video without any active
performer in the scene. Dynamic video recording was achieved by recording live video

featuring a performer (i.e. a pianist).

Recording statistics for the case where all cameras operate at a resolution of
640x480 and a frame rate of 30 fps are shown in Table 3.3 and Table 3.4. Based on these
results, we can observe that frames are never dropped because of a circular buffer
overrun. The average execution time for each test case is always below the real-time
deadline of 33 ms. Even if the peak processing time is significantly higher than the real-
time deadline, the 3 seconds of video buffering is generally sufficient and could even be

increased if needed. Overall, the only lost frames were dropped by the hardware layer
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and thus did not reach the actual computer’s memory. For 30 minutes (54000 frames)
video sequences, we observed that only 1 or 2 frames were dropped for that reason. This
is negligible for our purposes. In terms of video compression, a quantization factor of 4.0
is preferable because it yields to smaller file size (less data to be written to disk) and
slightly faster average frame processing time especially for the recording in a dynamic
scene. It should also be noted that file size on the second computer is always smaller that
the file size on the first computer. This depends on the actual video content which varies
with the positioning of the cameras. Recording statistics for respectively a lower
resolution and a lower frame rate, on a dynamic scene, are shown in Table 3.5 and Table
3.6. At a lower resolution, it can be advantageous to use a quantization factor of 2.0 since

the resulting video would be of very high quality while the file size remains acceptable.

Table 3.3. Real-time recording statistics for a static scene at high resolution

b sty St 4 ’z s e M
Frames not written to the circular buffer 0

— | Frame sets containing missing data 0

2 Average frame processing time 33.04 ms 28.05 ms
Peak frame processing time 129.05 ms 71.56 ms
Maximum size of video file 368 061 KB 43212 KB
Frames not written to the circular buffer 0 0

« Frame sets containing missing data 1 2

8 Average frame processing time 30.28 ms 28.95 ms
Peak frame processing time 57.46 ms 59.99 ms
Maximum size of video file 169 243 KB 21 230 KB

Table 3.4. Real-time recording statistics for a dynamic scene at high resolution

Frames not written to the circular buffer 0 0

— | Frame sets containing missing data 2 1

8 Average frame processing time 32.90 ms 28.60 ms
Peak frame processing time 92.13 ms 71.61 ms
Maximum size of video file 480 319 KB 124 685 KB
Frames not written to the circular buffer 0 0

« Frame sets containing missing data 0 2

g Average frame processing time 28.61 ms 27.92 ms
Peak frame processing time 91.95 ms 56.84 ms
Maximum size of video file 253031 KB 73 074 KB

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.5. Real-time recording statistics for a dynamic scene at low resolution

Frames not written to the circular buffer 0 0

- Frame sets containing missing data 0 0

2 Average frame processing time 6.43 ms 6.25 ms
Peak frame processing time 51.68 ms 17.56 ms
Maximum size of video file 81 306 KB 32 945 KB
Frames not written to the circular buffer 0 0

. Frame sets containing missing data 0 0

Y [ Average frame processing time 6.40 ms 6.27 ms
Peak frame processing time 13.12 ms 16.44 ms
Maximum size of video file 46 136 KB 21 829 KB

Table 3.6. Real-time recording statistics for a dynamic scene at low framerate

kS

Frames not written to the circular buffer 0 0

— | Frame sets containing missing data 0 0

§ | Average frame processing time 28.91 ms 25.35 ms
Peak frame processing time 114.39 ms 53.36 ms
Maximum size of video file 281 308 KB 73 441 KB
Frames not written to the circular buffer 0 0

« | Frame sets containing missing data 0 0

8 Average frame processing time 28.52 ms 26.64 ms
Peak frame processing time 46.35 ms 48.90 ms
Maximum size of video file 208 290 KB 45021 KB

3.6 Chapter Summary

. This chapter examined several design considerations to achieve a flexible multi-
camera and multi-computer human motion capture system. Specific camera hardware
requirements were first established. Then a multi-camera system architecture that ensures
adequate frame synchronization across multiple views has been presented. Finally a
software framework was developed to support the proposed system including the

acquisition and recording of multiple synchronized streams of video.
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Chapter 4. Synchronized Multi-Camera Network Calibration

A premise to almost all multi-camera computer vision applications is the accurate
calibration of all camera sensors. Indeed, as introduced in Chapter 2, the reconstruction
of 3D data, using shape-from-silhouette, requires the knowledge of internal camera
characteristics and, most importantly, a complete knowledge about the relative
positioning of all cameras. To achieve this task, two distinct classes of methods were
presented: classical approaches that rely on complex calibration targets and self-
calibration approaches that rely on the creation of a cloud of calibration points.
Unfortunately, as per section 2.4.4, methods based uniquely on the use of complex and
precisely manufactured targets yield to less accurate and highly restrictive calibration
when applied to multi-camera systems. On the other hand, methods based on the creation
of a cloud of virtual' calibration points typically yield to more accurate and less

restrictive calibration, but require a more complex implementation.

This chapter proposes a systematic method [44] to calibrate generic multi-camera
systems and, more particularly, the system designed in the previous chapter. The
proposed method utilizes both the strength of classical 2D calibration targets to model
the internal behaviour of each camera sensor, and the strength of single marker targets to
generate a cloud of virtual calibration points, to achieve precise and complete inter-
camera registration. The designed method aims at meeting a set of predefined

requirements enumerated in Table 4.1.

' Throughout this discussion, we utilize the term “virtual” to emphasis on the fact that the calibration

points are randomly created and do not correspond, in shape, to any physical 3D object.
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Table 4.1. List of requirements for a flexible and robust multi-camera calibration method

Scalability The method must be scalable in terms of the number of cameras in the
network as well as the dimensions of the working volume.

The global procedure should be easy to repeat since extrinsic parameters
Straightforward need to be recomputed every time there is a change in the positioning of
one or more camera. In addition, this procedure may need to be performed
by non-expert users.

The proposed method should be fully automated and should require
Ease-of-use minimal human manipulation, especially regarding manual measurements
in the working volume.

The calibration procedure should not require any cumbersome
Cumbersomeness modifications to the working environment. In particular, it should not
require to move any equipment already present in the working environment.
The proposed calibration procedure is designed for indoor setups and to be
Lighting controllability performed offline, as a configuration step prior to human motion capture. It
is therefore assumed that lighting can be adjusted during the calibration
procedure (basically, it can be turned off).

. The outputed calibration parameters must admit sub-pixel precision in order
Accuracy and precision | t be competitive with other multi-camera calibration techniques [38]
proposed in the literature.

No restriction should be imposed on the camera positioning apart from the
Free camera positioning | requirement that cameras need to share sufficient overlap between
viewpoints. This is not at all a limitation since 3D reconstruction algorithms
require very high overlap among views.

Cost of the calibration The cost of the calibration equipment should remain as low as possible. The
calibration equipment (targets) should not require any re-manufacturing
under an increase of the working volume dimensions.

equipment

4.1 Camera Calibration Scheme

A high-level view of the proposed calibration scheme is illustrated in Figure 4.1.
As for many existing multi-camera calibration procedures, the proposed method is
executed in two stages. In the first stage, the intrinsic parameters and lens distortion are
estimated for every camera. Since these parameters are completely independent from the
positioning of cameras, it is convenient to estimate these parameters separately for each
camera. In our application, a classical 2D checkerboard calibration pattern is used for
this purpose. This stage is performed only at the time of the initial configuration of the
acquisition setup because intrinsic parameters remain constant as long as there are no
changes in the lens (or focal length), or the image resolution. Qur camera setup utilizes

fixed focal length lenses and the working resolution is fixed at either 320x240 or

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



640x480. Once the intrinsic calibration stage is completed, all cameras can be positioned
in their final configuration (in the working environment). A second calibration step needs
to be performed in order to estimate the relative positioning and orientation of all
cameras in the camera network. This second stage is referred as the extrinsic camera
calibration. This stage has to be repeated every time there is a change in the positioning
of one or more camera. Practically, in the context of human gesture monitoring, this
stage is repeated significantly more often because it is regularly needed to perform slight

adjustments to the camera setup to best-fit the performer.

Stage 1 Stage 2
Find intrinsic parameters: Dispose all cameras in their final
start— and lens distortion for configuration and compute extrinsic . —» end
each camera separately parameters for all' cameras

i -

=y

£
o Q

Each camera is sequentially mounted on a Once all cameras are positioned in the working environment, a
tripod and connected to a computer that will cloud of virtual calibration points is created by waving a single
perform precise intrinsic camera calibration marker and is used to achieve full extrinsic calibration. This step
using a classical calibration target. This step is needs to be repeated every time there is a change in the
typically performed only once. positioning of one or more camera.

Figure 4.1. High-level view of the proposed calibration scheme

4.2 Stage 1: Intrinsic Camera Calibration

Our intrinsic camera calibration procedure utilizes an 8x10 checkerboard pattern
with 2cm x 2cm cell dimensions. For each camera, multiple views of this pattern are
acquired and the OpenCV [28] implementation of Zhang’s method [30] is used to
estimate the intrinsic camera parameters. An alternate solution would have been the use
of Bouguet’s Calibration Toolbox [29]. However, this toolbox is implemented in

Matlab™, which makes it more difficult to integrate with our application. Furthermore,
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the corner extraction process, in this toolbox, is only semi-automatic as the user is

required to hand-select the four extreme corners in each view which is not convenient.

To facilitate the intrinsic calibration of all 8 of our Flea2 cameras, we developed an
application (see Figure 4.2) that fully integrates with existing functionalities provided by
OpenCV [28]. Multiple views of the checkerboard pattern are captured from streaming
video, and corners are extracted automatically. Visual feedback is provided to assist the
user such that the checkerboard can be adequately positioned within the camera’s image
plane. Audible feedback is also provided to the user every time a new image is
processed. Our experimentation revealed that 20 views can be acquired in a timely
manner and are sufficient to obtain a good and stable estimate of the intrinsic camera
parameters. In addition, both radial and tangential distortions are modeled by our
calibration tool to prevent destructive effect in the camera registration and 3D
reconstruction, especially since many cameras in our setup are equipped with wide angle

lenses.

leaCalibApp

Figure 4.2. Application for fast intrinsic camera calibration
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4.3 Stage 2: Extrinsic Camera calibration

Once all cameras in the network are intrinsically calibrated and positioned in their
final configuration, they need to be registered to a common global coordinate system.
Classical approaches that rely on the correspondences between multiple known 3D
feature points and their corresponding 2D pixel position in the image plane, acquired
through the use of complex 2D or 3D calibration targets, are not suitable for multi-
camera calibration. As highlighted in section 2.4.4, these approaches tend to lack
flexibility and, thus, it is preferable to use an approach that relies on the creation of a

cloud of virtual calibration points.

In this work, a flexible framework for the extrinsic calibration of a generic multi-
camera setup is proposed. The method utilizes a moving feature point to create many
calibration points and to determine an initial estimate of the camera’s position. This
estimate is refined iteratively using a bundle adjustment technique [39] which is well
known to output very accurate calibration given an initial estimate which is close to the
actual solution. Therefore, the core of the proposed procedure is to determine such an
initial estimate, in a robust and automated manner, to ensure adequate bundle adjustment
convergence. To do so, the proposed framework counts on seven major steps, illustrated

in Figure 4.3, which will be detailed in the upcoming sections.
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Step 1: Acquiring image
matches

Step 2: Pair-wise
Fundamental matrix
computation

Step 3: Fundamental

matrix decomposition

Step 4: Solving pair-wise
scale factors

Step 5: Global Unification

Step 6: Global Optimization

Step 7: Rescaling network
to absolute units

Many matches are acquired by waving a marker in
the field of view of a synchronized network of
i ‘cameras. i

v

Fundamental matrices are found for as many pairs
of cameras as possible. A robust RANSAC analysis
is used to remove outliers.

v

A'3D rotation matﬁx and a unit translation vector s
calculated, for each pair of cameras, using
fundamental matrix decomposition.

v

Pair-wise scale factors are determined by constructing
a weighted graph of cameras which is consistent up
to a global scale factor.

v

An initial estimate of the extrinsic parameters, linking
all cameras to a reference camera, is obtained from a
shortest path analysis of the weighted camera graph.

v

A bundle adjustment algorithm is applied to
optimize extrinsic parameters for all cameras together.

v

The entire camera network is rescaled in order to
represent the final calibration with meaningful
absolute units (i.e. metric).

Figure 4.3. Seven-step approach to solve the problem of

extrinsic multi-camera calibration

4.3.1 Step 1: Acquiring Image Matches

From a classical point of view, we recall that a calibration point is defined as a
correspondence between a measured point in the 3D working volume and the pixel
coordinates of that point projected on an image plane. Acquiring a sufficient number of

calibration points requires either complex calibration structures or many manual
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measurements which is unacceptable due to the frequency at which a multi-camera

network needs to be extrinsically recalibrated.

The proposed implementation exploits the use of a virtually created cloud of
calibration points (sometimes referred as virtual calibration object in the literature),
which offers numerous benefits [36-38]. The strategy is to wave an easily identifiable
marker over the full workspace, therefore creating such a cloud of 3D points. In our
application, we use a simple light emitting device (LED) mounted at the extremity of a
stick. Such a calibration instrument is easy to build (see Figure 4.4) and is very easy to
identify in images when the room’s lighting is turned off (see Figure 4.5). The simplicity
and compactness of the calibration instrument allows excellent coverage of the working
volume without any interference with the presence of other equipments in the room.

While the marker is being waved, the marker’s pixel position is recorded for each frame

:ﬂ: 3V LED

in every camera view when available.

Switch Small resistor

AA—
ocC’) v \//LeD On,cff& i

switch

™~ Wood stick

4

1.5V AA battery
holder

Figure 4.4. Construction of a simple calibration target for extrinsic multi-camera calibration
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(b)

@) (©

Figure 4.5. Creation of a cloud of virtual calibration points:
(a) A cloud of calibration points is created by waving a red LED in the
entire working environment, (b) and (c) Target identification in two

images at a given instant in time

The automatic identification of the LED in images is achieved, with high
confidence, using simple thresholds in RGB color space along with basic analysis on the
size and shape of segmented blobs. However, the 3D world position of the target at every
instant in time remains unknown and cannot be measured since the target is being waved
randomly. Instead of considering absolute correspondences with 3D feature points, our
procedure is based strictly on image matches. An image match is recorded whenever the
target is simultaneously seen in at least 2 camera views. Synchronized multi-camera
video acquisition is ensured using the infrastructure developed in Chapter 3. In order to
minimize motion blur effects, cameras are configured with very short exposure time

(shutter) for the tracking of the LED marker.

Following this procedure, over a thousand image matches can be obtained in less
than 3 minutes of video recording. It should be noted that the nature of our marker, a red
LED, will only be easily identifiable in a dark room. This can be problematic if this

multi-calibration procedure is intended for outdoor use. This restriction can be avoided
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by using an alternative marker such as, for example, the marker proposed in the work of
Ihrke et al. [37].

4.3.2 Step 2: Pair-wise Fundamental Matrix Computation

Once a sufficient number of matches are found across the entire network, matches
are grouped by pair of cameras such that the fundamental matrix, between each camera
pair, is computed. The fundamental matrix, for a given pair, is however estimated only if
at least 30 matches were found. This number was chosen arbitrarily based on the
observation that, even if only 8 points are theoretically necessary, much more points are
needed, in practice, for precise fundamental matrix estimation. Experimentally, we
determined that using 30 matches or more is sufficient and lead to a good estimation of

the stereo relation linking two cameras (in step 3).

The fundamental matrix is computed using an 8-point RANSAC implementation
provided by the OpenCV library [28]. The purpose of the RANSAC analysis [45] is to
eliminate outliers. An outlier is defined as a false or an imprecisely measured image
match. When an outlier is found in one pair, it is removed from the global database of
image matches as well (in step 1). Unlike Svoboda et al.’s procedure [38], our image
matches are recorded in the undistorted image plane, using the lens distortion
coefficients pre-computed as per section 4.2, which enables the use of a stricter outlier
rejection threshold in the RANSAC analysis. Thus, we decided to classify a match as an
outlier if it has a distance from point to epipolar line above 2 pixels (as opposed to 10
pixels for Svoboda et al. [38]). It potentially allows a better estimate of the fundamental

matrix since inaccurate matches are rejected from the computation.

When computing the fundamental matrix from a set of image matches, difficulties
may occur from the use of degenerative configurations [33]. A degenerative
configuration occurs when two cameras share the same optical center (pure rotation, no
translation) or when a set of 3D points results in a numerically unstable computation of

the fundamental matrix. This latter case occurs if the 3D calibration points are all co-
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planar or follows a ruled-quadratic distribution. Fortunately, those situations are easy to
avoid or almost unlikely to occur [38]. Indeed, in a human motion capture system,
cameras need to be separated by large baselines, discarding the problem of cameras
sharing the same optical center. Furthermore, the fact that the full working volume is
covered in a random manner, with the LED calibration stick, significantly reduces the

risk to find all points over a co-planar or a ruled-quadratic distribution.

4.3.3 Step 3: Fundamental Matrix Decomposition

Each fundamental matrix needs to be decomposed into a rotation matrix and a unit
translation vector. This is done using the method proposed by Hartley and Zisserman
[33] which was earlier introduced in section 2.4.3. An essential matrix, E, is first derived
from the fundamental matrix (computed in step 2) and from the intrinsic matrices of both
cameras forming the pair (obtained using the one-time intrinsic calibration of section
4.2). An important property about the E matrix is that its singular value decomposition
must yield to two non-zero singular values which are equals. Therefore, the numerically
obtained E matrix is refined by computing the average of the first two singular values of
E and setting the third singular value to zero [34]. The E matrix can then be decomposed

into a rotation matrix and a unity translation vector as per equations (2.8) and (2.9).

Four mathematical solutions are found: two possible rotation matrices with an
offset of 180° about the baseline and two possible translation vectors (positive or
negative). To determine which solution is correct, we triangulate [46] one match and we
verify which solution provides a triangulated 3D point which is in front of both cameras
(positive z-axis). Multiple methods exist to triangulate, in 3D, an image match and are
compared in [46]. Mathematical derivations for triangulation methods used in this work
are shown in Appendix B. Ihrke et al. [37] reported that two out of four solutions may
remain valid after this verification if the two cameras are close to a 180° rotation (two
cameras facing each other). In the proposed implementation, we retain the solution which

yields to the smallest triangulation error. We quantify the triangulation error as the half-
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distance of the segment of intersection between the two 3D rays obtained with middle-

point triangulation.

4.3.4 Step 4: Solving Pair-wise Scale Factors

In the previous step, stereo relations for each pair were found up to a pair-related
scale factor. During the present phase, the magnitude of all translation vectors is
estimated such that the entire camera structure becomes consistent up to a unique, global,
scale factor. To do so, the method introduced by Chen er al. [36], which attempts to scale
the links incrementally, is used and enhanced. The basis of this technique is to

incrementally scale new links based on a scaled link as shown by the camera triplet of

Figure 4.6.
Cam 3
e
R13,T1ag . ResTzs
R12, T12 ;
Cam 1 Cam?2

Figure 4.6. A camera triplet that shows how two links are intersected

and scaled from a base link with a known scale factor

In Figure 4.6, the translation T, is fully scaled but T;3 and T3 are yet to be scaled.
To scale Ti3 and T3, the camera positions, Peam and Peams, are computed with respect to
the camera 1 reference frame. Peam is obtained directly since it is equal to Tij. Peams is
obtained by computing the vector intersection of T3 and T,3. Since T3 is expressed with
respect to the camera 2 reference frame, it first needs to be transformed to be expressed
with respect to the camera 1 frame using: 7,; = R,T,;. With Pz known, the scaling
factor of T3 is the Euclidian distance between Pcams and Peam; (0,0,0) and the scale factor
of T3 is the Euclidian distance between Pgyy3 and Peamz. Once T3 and T,z are scaled,

they can be used to find scale factors of other links. This is shown in Figure 4.7.
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24,T24
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Cam 1 Cam 2

Cam 2

Cam 1
Figure 4.7. Incremental link scaling procedure:

After the scaling of Ty3 and T3, To; is used to scale T4 and Ty

As more links get scaled, additional links can be created by the concatenation of
two or more solved links. This is shown in the example of Figure 4.8. In this example,

the links 1;5 and l45 cannot be scaled because link 114 does not exist. However, l;4 can be

computed from the concatenation of 1,3 and l34 such that:
Ry, =Ry Ry,
4.1

T, =Ry T, +T,

| S
""""""""" las Cam4

) las ,
- Cam4 {

Cam2

Cam 1

Cam 2

Cam1
Figure 4.8. Diagrams showing a link solved by 3D links concatenation

This procedure is repeated until all links are scaled or until a path linking all
cameras to the reference camera is found. Obviously, to start this algorithm, one link
needs to be scaled to an arbitrary value (i.e. a scale factor of 1). Hence, the structure is

fully determined up to a global scale factor. Section 4.3.7 will propose a few strategies in
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order to rescale the entire camera graph to units that are meaningful (example: metric

units).

In the original approach of Chen er al. [36], no formal mechanism is stated to
designate the ordering in which links, composing the graph of cameras, should be scaled.
However, pair-wise relations are not necessarily known with the same level of accuracy.
When a less accurate link is used to scale another link, its error is propagated to other
links thus yielding to a less accurate global estimate of the camera structure. The idea of
eliminating unneeded, low quality, links is briefly suggested by Chen ez al. but no
metrics is defined to quantify the links quality. Thus, we propose a formal weighted
camera graph analysis that allows the links to be scaled in a preferential order with the
objective of improving the accuracy of the initial estimate obtained in step 5 (section
4.3.5) and thus ensuring adequate bundle adjustment convergence in step 6 (section

4.3.6). This particular enhancement will be discussed in details in section 4.4.

Another outstanding issue, not mentioned in Chen et al. [36], remains in some
specific camera triplet configurations which lead to inaccurate vector intersection. Figure
4.9a shows a special case where the magnitude |[T;,||, that is the baseline between
cameras 1 and 2, is very small relatively to the distance of camera 3. In such a case,
vectors lj3 and ly; are almost parallel and therefore cannot be accurately intersected.
Figure 4.9b shows another special case where all three cameras composing the triplet are
almost co-linear. In this case as well, the vectors 1,3 and l; are almost parallel. These
special cases can be detected by a vector cross-product and should be avoided unless
they are absolutely required by the global unification procedure. The detection and
avoidance of these special scenarios are automated in the proposed framework (as will be

detailed section 4.4).
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Figure 4.9. Two special cases of camera triplets that lead to inaccurate triangulation

4.3.5 Step 5: Global Unification

The purpose of the global unification step is to determine a rotation matrix and a
translation vector that link all cameras in the network to the reference camera using only
links that were successfully scaled in the previous step. These relations correspond to the
extrinsic camera parameters. This step consists of finding a path that links all cameras to
the reference camera. In a complex multi-camera setup, there will be various paths to
link a camera to the reference camera and a conventional Dijkstra algorithm [47] is used
to determine the shortest, thus preferential, path using the resulting weighted graph
obtained from the previous step. Again, the specific details about link weights
assignment are discussed in section 4.4. The global unification stage results in the
computation of an initial (coarse) estimate of the extrinsic camera parameters for all

cameras.

An example of global unification is shown in Figure 4.10 where camera 1 is
considered as the reference camera. The extrinsic parameters for camera 1 correspond to
an identity rotation matrix and no translation. The extrinsic parameters for cameras 2 and
3 are determined directly from the inversion of links 1;, and 1,3 respectively. These links

need to be inverted recalling, from Figure 2.2, that the extrinsic camera parameters
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encode the relations linking all cameras to a global reference frame (here camera 1). To
obtain the extrinsic parameters for camera 4, a link between camera 1 and 4 is first
created from the concatenation of links l;; and ly. This newly created link is then
inverted. A similar approach is used to calculate the extrinsic parameters for camera 5. A
link is inverted using:

R=R"|T=-R"T 4.2)

Cam 5 Cam 5

inv(l13 > I3s) Cam 4

inv(l12 3 124)
inv(l12) ®
Cam 1 Cam 2 Cam 1 Cam2

Figure 4.10. Example of global unification

4.3.6 Step 6: Bundle Adjustment Optimization

Upon successful global unification, a coarse estimate of the extrinsic parameters for
all cameras is obtained. To reach a more precise calibration, these extrinsic parameters
are optimized using a sparse bundle adjustment implementation which integrates with the
framework proposed by Lourakis et al. [48, 49]. The bundle adjustment process is
illustrated in Figure 4.11. This procedure takes as inputs the intrinsic and the estimate of
the extrinsic parameters for each camera to calibrate. A second input to the bundle
adjustment consists of a database of measured 2D image points from each view. This
database is in fact the collection of image matches from step 1 (section 4.3.1) minus the
outliers. Similarly, a database of 3D world points is provided. This second database
contains the 3D world position of all calibration points acquired in step 1. Since the

position of these points is completely unknown, as established in step 1, these 3D points
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need to be calculated. The 3D location of every calibration point is calculated from the
triangulation of multiple corresponding image points using the intrinsic and the coarse
estimate of the extrinsic camera parameters. A standard linear least-square triangulation
algorithm [33, 46] was implemented for this purpose. The reader is referred to Appendix

B for further details about this implementation.

Inputs Outputs
Database of measured 2D image
points
> Updated database of 3D world points
image proj of all points, in each
B 3D position of all calibration points with respect io
view (when avaliable) the global reference frame
Database of 3D world points
3D position of all calibration points with respect to Bundle AdJUStment
the global reference frame
Updated extrinsic camera calibration
Intrinsic and extrinsic camera parametars for &l views
calibration parameters for each Intrinisic camera parameters remain unchanged
viewpoint

Figure 4.11. High level view of the Bundle Adjustment optimization procedure

The bundle adjustment can serve multiple purposes. A bundle adjustment can be
used to iteratively refine the extrinsic camera parameters, or the database of
reconstructed 3D points, or both. In situations where the 3D world points are known
exactly (ground truth), for example because they were manually measured, then only the
extrinsic parameters should be refined. On the other hand, if the camera calibration is
considered to be exact, then only the database of 3D world points should be modified by
the bundle adjustment. In our case both the extrinsic camera parameters and the database
of 3D points need to be optimized by the bundle adjustment since none of them
constitutes ground truth data. The extrinsic camera parameters need to be refined because
it is the overall goal of the procedure. The database of 3D world points also needs to be
refined because those points where calculated off of a coarse, inexact, estimate of the
camera calibration. At the end of the bundle adjustment, only the updated extrinsic

parameters are retained and the updated database of 3D world points is discarded.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.3.7 Step 7: Rescaling Network to Absolute Units

In step 4, pair-wise scale factors were calculated in order to obtain a consistent
camera network. However, to begin this procedure, one link (the first link), had to be
scaled to an arbitrary factor of 1.0. As a result, the extrinsic parameters found in step 5
and refined in step 6 are only defined up to a global and unknown scale factor. In terms
of calibration accuracy, there are absolutely no benefits in determining this absolute scale
factor. Indeed, if the extrinsic translation vector for every camera is multiplied by an
equal scalar value, there is absolutely no gain nor loss in the precision of the calibration
solution. However, one advantage of finding this absolute scale factor is that the
calibration data describing the camera structure and, consequently, the working volume
would be expressed using meaningful units, such as metric units. Thus, from a human
operator perspective, finding that absolute scale factor would become advantageous. Two

main strategies are proposed to determine the absolute scale factor.

1) An approximate solution consists of manually measuring the baseline distance
between the reference camera and any other camera in the network. The
absolute scale factor becomes the ratio between the measured baseline and the
baseline extracted from the camera model. This approach is easy to implement
but is not accurate since the position of the camera’s optical center is not

precisely known and manipulations are necessary.

2) Another approach builds upon the identification of two features in the working
volume seen by two or more cameras and with a known (measured) absolute
distance. The absolute scale factor becomes the ratio between the absolute
(metric) distance and the distance calculated from triangulation of the two
features. This approach requires the capability of identifying and reliably

matching the features in multiple camera views.

In our implementation, the problem of determining the absolute scale factor is

achieved by substituting the single point calibration target, presented earlier in Figure
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4.4, with a dual point calibration target, as shown in Figure 4.12. Markers are robustly
distinguished using two different colors (red and blue). The distance between the two
markers is reconfigurable (from approximately 10 ¢cm to 70 cm) in order to accommodate
working volumes of various dimensions. This enhanced, dual-point target, achieves both
the extrinsic calibration and the estimation of the absolute scale factor in a single

manipulation. This scale factor is estimated, frame-by-frame, and averaged at the end.

(b) ()

Figure 4.12. Reconfigurable dual point calibration target which achieves

extrinsic multi-camera calibration with no scale factor ambiguity; distance

between markers: (a) 76 cm, (b) 46 cm, (c) 13 ecm
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4.4 Improving the Initial Estimate of the Extrinsic Parameters

In order to ensure adequate buhdle adjustment convergence to a valid solution, and
not to a sub-optimal solution (a local minimum), a reliable initial estimate of the extrinsic
camera parameters is required. To improve the reliability of that initial estimate, it is
proposed that links are scaled in a preferential order such that links with a smaller error
are always preferred over links with higher error in both solving un-scaled links (in step
4) and determining the resulting extrinsic parameters of each camera (in step 5). As an
enhancement to the method proposed by Chen et al. [36], we propose a formal
methodology to assess the quality of the links and, consequently, to achieve a
preferential order. Assessing the quality of a link is not a trivial task and it depends on

many factors:

1) The number and the location of the matches used in the fundamental matrix
computation for a specific link can sometimes impact the quality of the link.
This is why the fundamental matrix for a given pair of cameras is only
computed if a sufficient number of matches (at least 30 matches) were found in

that pair.

2) The pair-wise average and maximal re-projection error can partially assess the
quality of a link. These two values are determined by the triangulation and re-

projection of all image matches for a camera pair.

3) The problem of error accumulation is probably the factor that influences the
most the quality of a scaled link. Indeed, the number of intermediate scaling
operations for a specific link can serve as an indicator of the quality of this link.
A similar observation can be made for links found by the concatenation of

multiple intermediate links.
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4) Special degenerative configurations of a camera triplet critically impact the

quality of a scaled link and need to be avoided whenever possible.

Thus, to improve the overall accuracy of the initial extrinsic calibration estimate,
we proposed to create a weighted camera graph that enforces a special ordering in
solving the camera graph. Such preferential ordering is controlled by a set of heuristic

rules:

Rule 1) A startup link is assigned a default scale factor of 1.0 to kick start the link
solving procedure of section 4.3.4. This startup link is assigned a weight
of 1 and should be any link that connects to the reference camera. Doing
so will allow the graph to be optimized such that lower weighted links

will be located near the reference camera.

Rule 2) When links are scaled by vector intersection, they take the weight of the
base link + 1, where the base link is the link between the first two cameras
of a triplet. This weighting indicates directly the number of intermediate

scaling operations that separate a link from the startup link.

Rule 3) Links found by the concatenation of multiple scaled links will be

weighted as the sum of weights of all intermediate links.

Rule 4) A queue is used to regulate the order in which the links are evaluated. At
the beginning of each iteration, all links that have already been scaled,
including links that can be solved by concatenation of existing links, are
added to an ordered queue where lower weights get dequeued first. When
a link is dequeued, an attempt is made to scale as many pairs as possible
using this sole link by testing all possible cameras as the third camera of a
triplet. Then a next link is dequeued until the queue is empty. A new

iteration begins until no new link can or needs to be scaled.
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Rule 5) Unscaled links are added incrementally in the camera graph, such that
poor quality links are not part of the network if they are not required by
the global unification. The quality of an unscaled link is computed as a
weighted average between the mean (weight=70%) and the maximal
(weight=30%) reprojection error' of all image matches for this pair. This
quality factor gets computed after the fundamental matrix decomposition
step (step 3). The steps of solving pair-wise scale factors and global
unification are performed iteratively starting only with high quality links
and introducing lower quality links later in the process, and only if they
are absolutely needed. This rule may seem to contradict with previous
rules in the sense that the link scaling should be done in a breath-first
manner. Thus, removing too many links from the graph may result in
requiring additional levels of intermediate scaling. Therefore, only the
links which admit an abnormally high error, in comparison to other links,

need to be withdrawn.

Rule 6) When a degenerative configuration is detected for a camera triplet, as
illustrated earlier in Figure 4.9, the two links to be intersected are placed
in a temporary buffer. Once the scaling of all links is completed, this
temporary buffer is revisited. If the delayed links have not been scaled
using an alternate route, then we have no other choice but to intersect the
two vectors even if they are almost parallel. In such case, a special weight
of twice the number of cameras in the network is assigned to those links

because they are expected to be very imprecise.

Figure 4.13 demonstrates an example of the aforementioned enhanced weighted
graph analysis. In Figure 4.13a, the link lo; is chosen as the startup link and is assigned a

scale factor of 1.0 and a weight of 1. In Figure 4.13b, links (lo2, 112), (los, 113) and (los, l14)

! The reprojection error for an image match is computed from the triangulation of this match in 3D and the
reprojection of this 3D point back into both image planes. The reader is referred to Appendix C for a

mathematical derivation.
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are all scaled using the base link ly; and therefore take a weight of 2. In Figure 4.13c, the
base link lo4, with weight 2, is used to scale links (lg7, 147). Similarly, link 1,4 is scaled
using the base link I and the already known link I;4. All new links are assigned a weight
of 3. It should be noted that links (I35, l45) remain unscaled even if the base link 14 is
known because cameras c1, ¢4 and c¢5 are nearly co-linear. In Figure 4.13d, the base link
l47 is used to scale links (lss, 1s7) with a weight of 4 and link ls7 itself is used to scale links
(Iss, 167) with a weight of 5. A new link is created between cameras c1 and c¢7 from the
concatenation of links inv(lp;) and ly;. The weight of this new link is the sum of the
intermediate links (1+3 = 4) and serves as a base link to scale the remaining link 1;5 with

a weight of 5.

Known links (to be scaled): los, loz, loa, los, lo7, l12, h13, l14, l1s, l24, las, lss, Is7, ls7

‘c1 ‘c1
o4 c5
"
Startup link
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Figure 4.13. Example of the enhanced link scaling procedure
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In the global unification step, a search for the shortest path to camera c0 is

performed to find the extrinsic parameters of all other cameras. It results in:

Camera c1: inv(lg;)

Camera c2: inv(lg)

Camera c3: inv(lg3)

Camera c4: inv(lg,)

Camera c5: inv(lg; = li5)
Camera c6: inv(ly; = inv(lg7))

Camera c¢7: inv(ly;)

4.5 Results and Analysis

The purpose of this final section is to validate the enhanced multi-camera

calibration procedure elaborated throughout this entire chapter. Our validation

methodology was performed as followed:

Section 4.5.1 analyses the overall (final) calibration accuracy obtained by

applying the proposed method to a variety of multi-camera networks.

Section 4.5.2 performs a qualitative analysis of the proposed calibration
method which relates to the pre-defined requirements established earlier in

Table 4.1.

In section 4.5.3 a comparison with respect to similar multi-camera

calibration methods is achieved in support to the proposed method.

Sections 4.5.4 and 4.5.5 concentrate on analyzing the behaviour of the

proposed method in the presence of critical scenarios.

Finally, section 4.5.6 provides numerical results of absolute scale factor

estimation using the dual marker calibration target.
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4.5.1 Assessing the Calibration Accuracy

The average reprojection error (see Appendix C) is used as a basis to evaluate the
accuracy of the achieved calibration. Any point seen by two or more cameras can be
triangulated in the 3D space and reprojected back into the image plane of each camera
using the final calibration. The Euclidian distance between each reprojected point and
their respective original (measured) position is computed and averaged. In order to
validate adequately the calibration accuracy, it is important to use a new set of virtual 3D
points, rather than the set used during the calibration procedure, to ensure that the camera

parameters were not overfitted with respect to a particular dataset [36].

To assess the versatility and stability of the proposed method, many camera
networks were tested. In total, 14 different camera networks were tested. Six of these
camera networks were composed of 3 cameras (see Figure 4.14) and were used to test the
vector intersection accuracy for many configurations of camera triplets. In particular, test
case 5 shows a camera triplet where two cameras have a very short baseline with respect
to the reference camera (in red). Test case 6 shows a critical configuration where
cameras are close to being co-linear. In addition, 4 networks composed of 4 cameras
were also tested (see Figure 4.15). Test case 9 contains 3 co-linear cameras but we recall
that the proposed algorithm should utilize the remaining camera to avoid intersecting
parallel vectors. Test case 10 shows a special case where all cameras are co-planar and
facing each other. Finally networks composed of S to 8 cameras were tested (see Figure
4.16) to ensure that the proposed calibration procedure remains accurate when the

number of camera increases.

The calibration accuracy is expressed in pixels. To be fair in comparing our

achieved calibration accuracy with results reported by other techniques, the tests were

performed at a standard resolution of 640x480 because it is the most commonly used
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resolution in the literature'. Furthermore, 5 out of the 8 cameras used for the testing were

equipped with highly distorting wide angle lenses.

Test case 1 Test case 2
[4]
« Test case 3
c1‘ & Cl 2
»
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c0 (d)
»
(e)
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c0 c1 c2
‘ ] [ ]

)

Figure 4.14. Test cases for networks of 3 cameras

! It should be noted that our actual motion capture experiments were performed at a reduced image
resolution of 320x240. During real experiments, the multi-camera network was simply re-calibrated for

this lower resolution.
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Figure 4.15. Test cases for networks of 4 cameras
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Figure 4.16. Test cases for networks of 5 to 8 cameras
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Table 4.2 shows the results for all enumerated test cases. For every test case, over a
thousand image matches were identified in only 3 minutes of video recording featuring
our LED-based target. From these results, we notice that all camera triplets tested (test
cases 1 to 6) are registered with very high precision. Even in the test case 6, where
cameras are quasi co-linear, the network is successfully calibrated. This particular
scenario is analyzed in more details in section 4.5.4. Overall, for networks of 3 to 8
cameras, the average reprojection error before the bundle adjustment step is always small
enough to guaranty bundle adjustment convergence but remains too high for accurate 3D
reconstruction. After the bundle adjustment step, this error is reduced to less than %2 pixel
and increases very slowly with the introduction of additional cameras. It has never been
observed that our bundle adjustment would not converge for any of the enumerated test
cases. To verify that the proposed method does not suffer from data overfitting, all
calibrations were validated using a new set of virtual 3D points (shown in the last

column). No degradation in the calibration accuracy could be noticed with the new set of

points.
Table 4.2. Calibration statistics for networks of 3 to 8 cameras
Average reprojection error [pixels
Number of | Number of | before bundle | after bundle | wi
Test case cameras 3D points adjustment adjustment

1 3 1452 1.4125 0.2949

2 3 1267 0.6637 0.2637

3 3 1609 1.4125 0.2742

4 3 1441 3.3140 0.2848

5 3 1088 0.8138 0.2424

6 3 1238 1.7347 0.2370

7 4 1798 1.6186 0.3518

8 4 1436 4.6608 0.3294

9 4 1672 2.5794 0.2787

10 4 1847 0.8910 0.2894

11 5 1869 3.4704 0.3476

12 6 1906 3.7134 0.3895

13 7 1911 3.9670 04152

14 8 1885 3.9365 0.4174

Table 4.3 provides detailed statistics, per camera, about test case 14 which utilized

all 8 cameras. From this table, it is possible to notice that before the bundle adjustment,
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the error is relatively high for the purpose of 3D motion capture, but, overall, remains
near the desired local minimum thus ensuring adequate bundle adjustment convergence
to very accurate final calibration for all cameras. Prior to the bundle adjustment, the error
fluctuates because of error propagation in links located far from the reference cameras,
but remains low in comparison with the results reported in the original Chen et al.’s

implementation [36], as further discussed in section 4.5.3.

Table 4.3. Detailed calibration statistics for test case 14 — 8 cameras

Reprojection error before Reprojection error
Cameraid | Num Proj. bundle adjustment after bundle adjustment
[pixels] v [pixels]
average | std. dev max . std. dev. max
c0 961 1.6383 | 0.7935 3.6186 0.2674 2.1811
cl 1373 1.8790 | 0.7423 4.9278 0.1978 1.3248
c2 1398 2.0240 | 1.9631 17.0612 0.2799 2.0468
c3 1077 5.2249 | 1.5802 9.7173 0.2811 1.5533
cd 1390 5.7618 | 2.7352 | 22.7446 0.2906 3.1634
c5 520 4.0560 | 2.3513 17.0315 0.2190 1.3888
c6 1563 3.0211 1.4204 8.1933 0.2325 1.7669
c7 1296 79117 | 2.1979 | 13.9244 0.2312 1.6123
All Cameras 9578 39367 | 1.8315 | 22.7446 0.2430 3.1634

4.5.2 Qualitative Evaluation

The proposed calibration method meets the predefined requirements of Table 4.1.
This method is easy-to-use because it requires very few human manipulations. The only
mandatory manipulation is to wave a LED calibration stick randomly over the working
volume. Absolutely no cumbersome or time-consuming absolute measurements of 3D
points are required. This extrinsic calibration method is straightforward and can be
repeated conveniently whenever there is a change in the camera positioning. The
calibration procedure is scalable because: 1) the calibration results remain very accurate
with an increase in the number of cameras and because 2) this procedure may be applied
to smaller or larger working volumes with minimal modifications to the calibration
target. Complete coverage of the working volume is easy to achieve with no coplanarity
concerns, as shown in Figure 4.17. The black dots correspond to the cloud of calibration
points. The compactness of the calibration target allows the calibration to be performed

without moving any equipment already present in the workspace and is therefore suitable
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for non-empty working volumes. Finally, the procedure imposes very minimal
constraints to the camera positioning (wide baseline and large orientation changes are
easily accommodated). Only sufficient overlapping between cameras’ field of view is

required.

,.C‘l c4 95
s W
c2
® c6
>
c3 ’
-
c7
) L]
c0 )
[

Figure 4.17. A model that shows the positioning of all cameras

along with all virtual 3D calibration points

4.5.3 Comparison with Other Methods for Multi-Camera Calibration

It is clear, from the accuracy assessments of section 4.5.1 and the qualitative
analysis of the above section, that the proposed solution surpasses classical methods that
require complex calibration targets [22, 32, 35]. The proposed solution naturally lends
itself for comparison with alternative self-calibration methods of Chen et al. [36], Ihrke
et al. [37] and Svoboda et al. [38] that all utilize a similar cloud of virtual calibration

points.
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The technique used to determine the initial estimate of the extrinsic camera
parameters in the method of Chen et al. [36] is similar to the proposed method.
Unfortunately, cameras are not precisely synchronized and no systematic rules are
enounced regarding the order in which links are scaled. Consequently, very high average
reprojection errors, from 16 to 38 pixels, are reported in [36]. In contrast, our approach
yields to an initial estimate which admits an average reprojection error never above 5
pixels in all tests executed as reported in Table 4.2. Another major distinction resides in
the fact that Chen et al. applied iteratively an extended Kalman filter as the final
optimization step, instead of a bundle adjustment. The final average reprojection error
reported in [36] is always above 1 pixel of precision, while our method admits a final

accuracy under V2 pixel.

In the method of Ihrke et al. [37], an initial estimate of the extrinsic parameters is
also obtained from a camera graph analysis, except that closed cycles are considered,
rather than vector intersections. The first part of their validation procedure was
performed using synthetic data rather than real-data which, in a sense, is not meaningful
to assess the registration accuracy of real-world camera hardware that admits several
forms of distortions not present in simulated data. When applying their procedure to the
calibration of a real multi-camera system, they report a final accuracy which is always
above 1 pixel and sometimes even above 5 pixels, which is 2 to 10 times less accurate
than the results obtained with the method proposed in this thesis. This higher error can be
attributed to multiple factors. Their camera graph analysis does not take into account the
fact that some links are known with less accuracy than others. They utilize a bundle
adjustment as their final optimization step but their implementation is unsuccessful at
achieving sub-pixel precision because it is reduced to the optimization of only the

camera rotation and translation parameters and not the cloud of 3D calibration points.
Finally, the method proposed in this thesis admits competitive accuracy with
respect to the results reported by Svoboda et al. [38] where sub-pixel accuracy is

achieved for networks of up to 16 cameras. In their approach, even the intrinsic

parameters and distortion coefficients are self-calibrated using solely the cloud of points

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



acquired from waving a red led. In a sense, this is an advantage with respect to our
method except for the fact that their approach is very expensive computationally. Indeed,
a wait time of 60 to 90 minutes is reported in order to calibrate a multi-camera system,
not counting the computational time required to extract the image matches from the
multiple video files. In our approach, the image matches identification remains relatively
slow (approximately 15 minutes for 8 cameras at 640x480) but the extrinsic calibration is
achieved in less than 20 seconds. This is a key advantage for multi-camera networks that

frequently need to be re-calibrated.

Overall, the proposed calibration technique is competitive with existing advanced
techniques for multi-camera calibration [36-38]. The proposed method is convenient,
accurate and can calibrate effectively a wide variety of multi-camera networks. The
remaining sub-sections provide further testing under critical camera configurations to

show the robustness and the generality of the proposed solution.

4.5.4 Critical Camera Configurations

Test case 6 exhibited a very special situation where three cameras are almost co-
linear but still yield to accurate calibration. This very particular case should have failed
due to our incapacity of intersecting parallel vectors. However, such failure only occurs
when cameras are precisely aligned. To demonstrate examples of numerical failures for
this very special configuration, test case 6 has been repeated twice with precisely aligned
cameras. Results are shown in Table 4.4 and Table 4.5. Prior to the bundle adjustment
(Table 4.4), results are totally inaccurate. This inaccuracy prevents the bundle adjustment
to converge to sub-pixel accuracy. Indeed, in Table 4.5 the bundle adjustment converges
but to a final average reprojection error of 1.04 and 3.79 pixels in the two trials that were

made.
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Table 4.4. Examples of numerical instabilities, prior to the bundle adjustment,

that occur for the case of 3 precisely co-linear cameras

Reprojection error (1* trial) Reprojection error (2™ trial)
[pixels] [pixels]
Camera id average | std. dev max average std. dev. max
c0 0.7365 1.2617 6.2984 4.0598 4.2967 11.4465
cl 7.2344 13.8929 72.3223 53.7698 57.6931 150.7241
c2 13.6850 9.4925 39.3982 57.7435 17.7884 81.4626
All cameras | 5.6786 10.3504 72.3223 35.3670 37.8471 150.7239

Table 4.5. Numerical instabilities, for the case of 3 precisely co-linear

cameras, remain even after the bundle adjustment

Reprojection error (1% trial) Reprojection error (2™ trial)
[pixels] [pixels]
Cameraid | average | std.dev max average std. dev. max
c0 0.1159 0.0896 0.5569 0.1852 0.1434 0.6026
cl 0.3816 0.4082 2.9197 3.2659 1.7331 6.9529
c2 5.9279 1.0934 11.5288 11.6418 2.4528 21.9629
All cameras | 1.0402 0.4978 11.5288 3.7895 1.5707 21.9629

This fabricated example shows the importance of detecting numerically unstable
cases of co-linearity regarding vector intersections of critical camera triplet
configurations. In larger camera networks, it is almost unlikely that all cameras will be
co-linear although sub-groups of cameras may be. Test case 9, of Figure 4.15¢, exhibits a
situation where 3 cameras out of 4 were co-linear. Table 4.6 shows the calibration results
for a camera network similar to test case 9. On the left side of Table 4.6, no detection is
made to detect co-linear vectors and an unacceptable calibration is obtained with an
average reprojection error of 42 pixels. On the right side of Table 4.6, it is shown that
avoiding the intersection of co-linear vectors improves, almost 15 times, the calibration
such that an average reprojection error of 2.9 pixels can be achieved, for the initial

estimate, under the exact same camera network.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 4.6. Test case 9 revisited to show the importance of detecting and avoiding cases of co-linear

camera triplets (results shown prior to the bundle adjustment optimization)

Reprojection error without avoidance of Reprojection error with avoidance of
co-linear camera triplets co-linear camera triplets
Camera id [pixels] [pixels]
average std. dev max average std. dev. max
c0 2.5953 3.6594 21.9626 0.6578 0.3734 1.6634
cl 50.5562 56.8650 209.2420 4.8254 2.3489 9.5265
c2 147.3603 27.7315 288.1373 6.2320 0.8893 7.4704
c3 32.1386 39.1203 116.4889 2.2075 1.0148 6.6232
All cameras 42.1650 37.7475 288.1373 2.9191 1.3815 9.5265

This decisive difference in the accuracy of the initial estimate significantly impacts
the ability of the bundle adjustment to converge. Indeed, on the left side of Table 4.7, the
bundle adjustment fails to converge to sub-pixel accuracy while on the right side of
Table 4.7, the bundle adjustment converges to an average reprojection error of 0.29
pixel. Therefore, by the sole detection of cases of co-linear camera triplets, the final

camera calibration accuracy is almost 5 times better.

Table 4.7. Test case 9 revisited to show the importance of detecting and avoiding cases of co-linear

camera triplets (results shown after the bundle adjustment optimization)

Reprojection error without avoidance of Reprojection error with avoidance of
co-linear camera triplets co-linear camera triplets
Camera id [pixels] [pixels]
average std. dev max average std. dev. max
c0 0.1529 0.0948 0.5221 0.1488 0.0956 0.6123
cl 1.9363 0.6978 3.6609 0.4242 0.2452 1.8700
c2 2.5869 0.4080 4.2910 0.3589 0.2382 1.7976
c3 1.6729 0.5975 3.7172 0.2796 0.1599 1.1055
All cameras 1.3942 0.5123 4.2910 0.2877 0.1830 1.8700

4.5.5 Importance of the Enhanced Weighted Graph Analysis

Besides the detection of co-linear camera triplets, other enhancements were
implemented to increase the overall robustness of the proposed method. In particular, our
hybrid approach, which relies on the scaling of links using both vector intersections and

link concatenations, allows the calibration of networks that contain many missing
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(unknown) links. This enhancement was earlier studied, theoretically, in the examples of
Figure 4.8 and Figure 4.13 and is completely transparent from a user perspective. The
sole purpose of this enhancement is to allow the calibration of multi-camera networks
which admits fewer overlaps among cameras. Furthermore, eliminating links with
abnormal errors (high average reprojection error) helps minimizing the error propagation
over other links. This was never really observed in our tests because a link is solved only

if a sufficient number of matches were found for a particular pair.

The fact that links are scaled in a breath-first manner, using an ordered queue, can
also attenuate slightly the average reprojection error of the global network. Indeed, if
links were scaled in an arbitrary order or, critically, in a depth-first manner, the error
propagation would typically be higher. An example of such a situation was fabricated in
the example of Figure 4.18. To emulate a depth-first search, all redundant links were
manually disabled to force links to be scaled in depth. Table 4.8 shows, in this particular
example, that issuing a search in a breath-first manner yields to an average reprojection
error of 3.94 rather than 5.92 if the search was issued in a depth-first manner. Of course,
in this example, the improvement is not significant and thus the bundle adjustment
converges, in both cases, to sub-pixel accuracy without any difficulty. However, for very

large camera networks this enhancement can certainly be more predominant.

Cam7 Level 7 Cam 8

Level 2
ciq 1

Figure 4.18. Calibration of a camera network with minimal number of links found
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Table 4.8. Calibration statistics when, respectively, all links,

and a minimal number of links are enabled

Reprojection error before
bundle adjustment
[pixels]
average std. dev max

Calibration with minimal number of links 5.0044 2.5843 27.1858

(depth-first)

Calibration with all links enabled
(breath-first) 3.9367 1.8315 22.7446

4.5.6 Estimation of the Absolute Global Scale Factor

Representing the final calibration using meaningful units is a clear asset because it
provides realistic and absolute dimensions about reconstructed objects. Section 4.3.7
introduced an efficient method to estimate the absolute scale factor using a dual LED,
rather than a single LED, calibration target. The purpose of this section is to evaluate the
use of this new calibration target to estimate the absolute scale factor of any given

calibrated multi-camera network.

For this test, a network composed of 8 cameras, similar to Test case 14 of Figure
4.16d, has been used. Three different video sequences have been recorded using three
different configurations of the dual LED calibration target. Video sequence 1 was
recorded using the target configuration of Figure 4.12c with a distance between LEDs
measured at 13 cm. Video sequence 2 was recorded using the configuration of Figure
4.12b with a distance between LEDs measured at 46 cm. Finally, video sequence 3 was
recorded using the configuration of Figure 4.12a with a distance between LEDs

measured at 76 cm.

In Table 4.9, video sequence 1 (LED distance = 13 cm) was used to calibrate the
camera network. The fully scaled calibration network was then cross-validated using
video sequences 2 and 3. In Table 4.10 and Table 4.11, a similar experiment was
performed using, respectively, video sequences 2 (LED distance = 46 cm) and 3 (LED
distance = 76 cm) to calibrate the network. Clearly, the use of a LED distance of 13 cm
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is too small, relatively to the working volume dimensions (2.5m x 2.5m x 2.5m), to
achieve an accurate estimation of the effective scale factor. Indeed, with the calibration
of Table 4.9, a measured distance of 46 cm is modeled at 48.29 cm and a measured
distance of 76 cm is modeled at 79.22 cm. Alternatively, when the camera network is
scaled using video sequence 2 or 3 (Table 4.10 and Table 4.11), the scale factor estimate
is much more accurate. In Table 4.10, a distance of 13 cm is modeled at 12.68 cm and a
distance of 76 cm is modeled at 75.34 cm. Similarly, in Table 4.11, a distance of 13 cm
is modeled at 12.86 cm and a distance of 46 cm is modeled at 46.53 cm. Both the
experiments of Table 4.10 and Table 4.11 led to a stable scale factor as the ratio between
the measured and modeled distances, during the validation phase, is always very close to

1.00. The scaling error remains within lcm of the exact distance which represents less

than 0.5% of the working volume dimension.

Table 4.9. Scale factor estimation using video sequence 1 (distance b/w LEDs = 13 cm)

Video sequence 2 Video sequence 3
Measured distance b/w LEDs 46.0 cm 76.0 cm
Modeled distance b/w LEDs (avg) 48.29 cm 79.22 cm
Modeled distance b/w LEDs (std. dev) +0.36 cm +0.79 cm
Number of samples 1451 1302
Scale factor ratio 0.9525 0.9594
Scale factor error -0.0475 -0.0406

Table 4.10. Scale factor estimation using video sequence 2 (distance b/w LEDs =46 cm)

Video sequence 1 Video sequence 3
Measured distance b/w LEDs 13.0cm 76.0 cm
Modeled distance b/w LEDs (avg) 12.68 cm 75.34 cm
Modeled distance b/w LEDs (std. dev) +0.20 cm +0.75 cm
Number of samples 1351 1302
Scale factor ratio 1.0254 1.0087
Scale factor error +0.0254 +0.0087

Table 4.11. Scale factor estimation using video sequence 3 (distance b/w LEDs = 76 cm)

Video Sequence 1 Video Sequence 2

Measured distance b/w LEDs 13.0cm 46.0 cm
Modeled distance b/w LEDs (avg) 12.86 cm 46.53 cm
Modeled distance b/w LEDs (std. dev) +0.20 cm +0.40 cm

Number of samples 1351 1449
Scale factor ratio 1.0106 0.9885
Scale factor error +0.0106 -0.0115
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Table 4.12 and Table 4.13 demonstrate scale factor estimation results achieved by
manually measuring the metric baseline between a pair of cameras chosen arbitrarily, as
alternatively proposed in section 4.3.7. Results were then validated using the same three
recorded video sequences. In terms of accuracy, this manual technique performs better
than the experiment of Table 4.9 (LED distance = 13.0 cm) but not as well as the
experiments of Table 4.10 and Table 4.11. Overall the scale factor estimate using this
manual technique remains acceptable but only because cameras are separated by large
baselines respectively to the working volume dimensions (this is a requirement imposed

by the shape-from-silhouette algorithm).

Table 4.12. Scale factor estimation using manual camera baseline

measurement (distance b/w cam0 and caml = 136 cm)

Video Sequence 1 | Video Sequence 2 ] Video Sequence 3
Measured distance b/w LEDs 13.0cm 46.0 cm 76.0 cm
Modeled distance b/w LEDs (avg) 13.05 cm 47.23 cm 77.53 cm
Modeled distance b/w LEDs (std. dev) +0.20 +0.38 +0.78
Number of samples 1351 1450 1302
Scale factor ratio 0.9964 0.9739 0.9802
Scale factor error -0.0036 -0.0261 -0.0198

Table 4.13. Scale factor estimation using manual camera baseline

measurement (distance b/w cam0 and cam7 = 221 cm)

Video Sequence 1 ]| Video Sequence 2 | Video Sequence 3
Measured distance b/w LEDs 13.0cm 46.0 cm 76.0 cm
Modeled distance b/w LEDs (avg) 13.13 cm 47.54 cm 78.04 cm
Modeled distance b/w LEDs (std. dev) +0.20 cm +0.38 cm +0.78 cm
Number of samples 1351 1450 1302
Scale factor ratio 0.9899 0.9676 0.9738
Scale factor error -0.0101 -0.0324 -0.0261

Two methods to estimate the absolute scale factor of a calibrated multi-camera

network have been evaluated. Measuring the baseline between a pair of cameras that
admits a large baseline provides an acceptable estimate of the absolute scale factor.
However, from a user perspective, this method requires the calibration to be performed
in two stages: 1) calibrate the network using a single marker and 2) measure the scale
factor. The use of a dual LED calibration target eliminates this second step and,

additionally, achieves a better scale factor estimate provided that the distance between
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the LEDs is reasonably large in proportion to the working volume dimensions.
Furthermore, since two points per frame can be recorded (two LEDs), the video
acquisition routine can be shortened almost by half (i.e. 90 seconds of video recording

instead of 3 minutes), therefore accelerating the overall calibration procedure.

4.6 Chapter Summary

In this chapter, a convenient procedure was developed to achieve full calibration of
a multi-camera network. The intrinsic parameters were computed once using a classical
method that requires multiple frames, directly acquired from streaming video, of a small
2D checkerboard pattern. Extrinsic parameters were solved using a custom method that
relies on the creation of a cloud of virtual calibration points. Experimental results
demonstrated that the use of a weighted camera graph analysis is very robust and
provides accurate calibration estimates before and after the bundle adjustment. Overall, a
reprojection accuracy of up to Y2 pixel is achieved for networks containing as much as 8
cameras. This approach also meets all pre-established requirements of scalability, ease-
of-use and non-cumbersomeness, required by non-expert users. Finally, our innovative
dual-marker target allows extrinsic calibration and estimation of the global scale factor in

a single step.

In summary, this work resulted in the development of a versatile software
framework for precise multi-camera calibration. This framework was primarily designed
for the accurate calibration of a markerless motion capture system. However, this solid
approach also finds applications in a variety of multi-camera systems ranging from

stereo to large scale multi-camera networks.
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Chapter S. Volumetric Reconstruction and Coloring

The previous two chapters achieved the design of a synchronized and calibrated
multi-camera setup. This chapter focuses on volumetric reconstruction from multi-
camera video data using shape-from-silhouette. In Chapter 2, it has been established that
a volumetric representation, rather than multiple 2D images, of a human performer
results in a better cue for human motion capture. Kehl ef al. [21] even mention that
multi-view 2D images, solely, provide weak cues, thus resulting in complex and
computationally demanding post-processing analysis to extract human posture
information. The process of volumetric reconstruction, using shape-from-silhouette, was
previously introduced in section 2.5. Synchronized video sequences of a performer are
acquired and pre-processed to extract the human silhouette in each view. With the
accurate knowledge of the calibration parameters for all cameras, synchronized
silhouettes are intersected in 3D to obtain a voxel representation of the performer, which

can later be used to extract high-level kinematics information about the human posture.

This chapter is subdivided as follows: In the first section, various silhouette
extraction methods are evaluated. The second section elaborates on a practical shape-
from-silhouette implementation which determines the binary occupancy information of
all voxels that subdivide the working environment. In the third section, a voxel coloring
scheme is proposed and provides a supplementary cue to higher-level gesture analysis
modules. Voxel reconstruction and coloring results are presented in the final section,

with particular interest to the piano pedagogy application.

5.1 Silhouette Extraction

The extraction of human silhouettes from images with a complex background is a
research area on its own. In the current project, the silhouette extraction activity was

pursued by a colleague [8-10]. In many vision-based motion capture systems, techniques
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that rely on the statistical modeling of an empty background are very popular although
not optimal. Indeed, background subtraction techniques require the background to
remain static throughout the entire acquisition [8]. Under this constraint, it is never
permitted, for a performer, to move any object within the working environment.
Furthermore, a simple change in the working environment’s lighting may compromise
many of these algorithms. The problem of shadow pixels being classified as foreground
is also difficult to handle. Nevertheless, an example of background subtraction is shown
in Figure 5.1 to demonstrate that acceptable results can be obtained using this technique

provided that the foreground object sufficiently contrasts with respect to the background.

Figure 5.1. Process of background subtraction for silhouette extraction

As an alternative to background subtraction, region-based segmentation allows the
decomposition of an image into several regions based on color and texture similarities
between neighboring pixels. Recent advances related to region-based segmentation are
very promising [9, 10]. This segmentation scheme allows the pianist silhouette to be
extracted without any prior knowledge of the background. Evolving backgrounds are
therefore permitted. Examples of region-based segmentation are shown in Figure 5.2 and
were generated using the implementation described in [9, 10]. Regions of interests are
manually chosen for the first frame of video but the tracking is fully automated over all

of the remaining frames. While this segmentation scheme provides many clear
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advantages, it admits the drawback of being very demanding computationally; therefore
resulting in long wait times in order to generate silhouette data especially over long

video sequences from multiple cameras.

Figure 5.2. Example of region-based human body segmentation

without any prior knowledge of the background

In this work, two segmentation schemes were used for volumetric reconstruction. A
statistical segmentation implementation [8], based on Mixture of Gaussians, was
primarily used because of faster execution time. In this implementation, the background
is learnt during the first 10 seconds of video and then remains static for the rest of the
acquisition to avoid the problem of non-moving foreground body parts being gradually
incorporated to the background model [22]. Some reconstruction examples featuring a
novel region-based segmentation implementation of [9, 10] were also produced with the
objective of reducing, to some extend, the constraints imposed on the working

environment.

5.2 Voxel Occupancy Classification

To compute a binary (occupancy) voxel model of the performer, the working
volume is subdivided into many equal-size voxels at a desired resolution (i.e. 64°, 128>

or even 256° ). Our implementation [50] utilizes single resolution voxels because multi-
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resolution (octree-based) approaches are difficult to post-process. The 3D position of
each voxel is calculated with respect to a reference camera acting as the world reference
frame. This allows all voxels to be projected over all silhouette images thus leading to

the binary classification of each voxel as either “background” or “foreground”.

An exact shape-from-silhouette algorithm was proposed in Algorithm 2.1. This
algorithm assumes perfect calibration and perfect silhouette images. In practice, the

accuracy of shape-from-silhouette depends on both:

®  The accurate projection of each voxel over each image plane using the multi-

camera calibration parameters.

The robust occupancy evaluation of each voxel projected over all silhouette

images.

The accuracy of the calibration was assessed in the previous chapter. However,
silhouette images are never perfect and can sometimes be significantly noisy. This
section highlights specific details about the implemented shape-from-silhouette

algorithm that takes into account possible inaccuracies regarding sithouette data.

5.2.1 Fast Computation of Voxel Projections

In order to determine the occupancy state of a voxel, it first needs to be projected
over each silhouette image. In this work, we analyzed the use of a few distinct methods

to achieve this task.

Method 1: Computing the Convex Hull of a Projected Voxel

An exact method to calculate a voxel projection is shown in Figure 5.3. All eight
vertices of a voxel are first projected over the image plane, as shown in Figure 5.3a. The

convex hull of the projected vertices is then computed, as per Figure 5.3b. Available
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implementations exist for convex-hull calculation and can be found, for example, in the
OpenCV library [28].

(a) (b)

Figure 5.3. Projection of a voxel in an image

Method 2: Computing the Bounding Box of a Projected Voxel

A significant problem regarding convex hull calculation resides in very high
computational requirements. As an alternative, a voxel projection can be approximated
by calculating its bounding box, as shown in Figure 5.4a, using the min and max values
in both X and Y coordinates. With this approximation, few pixels outside the convex hull
but inside the bounding box will be mistakenly included within the projection, as shown
in Figure 5.4b. However, it has minimal incidence on the final classification of a voxel
projection because of the relatively small size of the projections in the images when the

voxel model has a sufficiently high resolution.

(@) (b)

Figure 5.4. Bounding box approximation of a voxel projection

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Method 3: The Sampling a Voxel Projection

Cheung et al. [18] raised an issue related to the high number of pixels that need to
be visited, with both the convex hull and the bounding box approaches, to evaluate the
occupancy state of each projection. To reduce the number of pixels to be tested, they
proposed the Sparse Pixel Occupancy Test (SPOT) where each voxel projection is
uniformly sampled. Thus, the voxel occupancy evaluation is accelerated by visiting only
a subset of the pixels pertaining to each voxel projection. Cheung ef al. estimated that for
a working environment configuration where a voxel projects in an image region of, in
average, 10 pixels, only 2 samples are sufficient to evaluate the voxel occupancy with a
misclassification rate below 1%. Kehl ez al. [20] chose to utilize only the projection of

voxel centers along with the 4 nearest neighboring pixels.

Accelerated Voxel Projection Using Pre-Computed Lookup Tables

In all of the above-mentioned methods, it is advantageous to encode information
about all voxel projections into pre-computed lookup tables such that these computations
are not repeated continuously for each frame of video. Table 5.1 shows the memory
requirements involved in using lookup tables (LUT), for each of the aforementioned
methods, using 8 cameras and a standard voxel resolution of 128, The convex hull
approach requires the recording of 6 image points delimiting the boundaries of each
voxel projection, leading to a significantly large LUT of 384 MB. Unfortunately, even
with the knowledge of those 6 boundary points, it is not obvious, from a computational
perspective, to determine which pixels are contained inside the closed contour formed by
those 6 points. On the other hand, the bounding box approach leads to a smaller-size
LUT (128 MB) and a simple scan of the bounding box ranges, defined by the min and
max values in both X and Y directions, is required to determine the pertinent pixels to be
evaluated. The SPOT implementation of Cheung et al. [18] is advantageous because
fewer pixels need to be evaluated per voxel projection. However, very few samples per

voxel projection can realistically be kept without exceeding any reasonable memory
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requirements and, thus, resulting in less robustness against noisy silhouette data. Finally,
the voxel center approach is probably the most memory efficient method, but is not

robust against noisy silhouette data.

Table 5.1. Memory requirements for different voxel projection LUTs

Memory requirements Total memeory requirements
per voxel projection 128° resolution, 8 cameras
[Bytes/projection] [MB]
Convex i 4 4
- 6 p.omfs N 2coo‘rds « 2bytes _ 2 {)yte's 2 .byte.s *8cams *128° voxels = 384MB
projection  point  coords projection projection
Boundin
box 8 4“.)0”{‘9 « 2bytes _ 8b.ytef —Sb.yte.? *8cams *128° voxels = 128MB
projection coords  projection projection
SPOT 4 point. 1
(4 samples) p?zn .s * 2coo'rds « 2bytes - 61‘7yte‘s 16{2yte's *8cams *128 voxels = 256 MB
p projection  point  coords  projection projection
SPOT i
(2 samples) 2 p‘omfs « 2coords . 2bytes - 8b.yte~? 8b.ytes *Scams *128° voxels = 128MB
p projection  point  coords  projection projection
Voxel ]
contor 1 p.om.t * 2c‘oo.rds  2bytes _ 4b.yte.‘s 4b'yte..s *8cams *128° voxels = 64MB
projection  point  coords  projection projection

In the proposed implementation, full bounding boxes are used because they can
efficiently be encoded in lookup tables and because all pixels are evaluated thus
improving the robustness of the reconstruction under non-optimal silhouette data and,
most importantly, because they are needed for proper occlusion detection in our voxel

coloring algorithm that will be described in section 5.3.

5.2.2 Voxel Projection Evaluation

Voxel projections are evaluated against the pre-calculated silhouette images, for all
camera views. A voxel projection can either lie over a foreground (Figure 5.5a), a
background (Figure 5.5b), an edge image region (Figure 5.5c) or outside the image
boundaries. In this latter case, this particular view cannot vote on the occupancy state of

the voxel of interest.
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(a) ‘ (b) ©
Figure 5.5. Voxel projection evaluation: white pixels correspond to the silhouette of an arbitrary
foreground object, black pixels correspond to the background, and the red box corresponds to a

bounding-box approximation of a voxel projection.

From a theoretical point of view, in a single-resolution shape-from-silhouette
algorithm, as presented earlier in Algorithm 2.1, each voxel is either classified as
“foreground” or “background” based on the intersection of all voxel projection binary
classifications. According to this algorithm, there is no “edge” state and, thus, “edge”
projections need to be reclassified as either “background” or “foreground”, based on the
ratio of silhouette versus background pixels inside the projection. To the opposite, in the
case of a multi-resolution shape-from-silhouette, an “edge” state is required because it
determines if a voxel needs to be subdivided or not.

In our single-resolution shape-from-silhouette implementation, we found useful to
keep an “edge” state at the voxel projection level which is to be resolved only at the
voxel classification level (see section 5.2.3). This is done in order to increase the
robustness against noisy silhouette data. Therefore, voxel projections are being evaluated

as follows:

®  Foreground: A projection is classified as “foreground” if at least 50% of the

pixels that pertain to the projection, over an image, are silhouette pixels.

™ Background: A projection is classified as “background” if less than 20% of the

pixels that pertain to the projection, over an image, are silhouette pixels.

® Edge: Whenever the silhouette pixels count is smaller than 50% but greater

than 20%, the projection is classified with a special “edge” classification value.
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Any voxel projection that counts at least 50% of silhouette pixels is naturally
classified as “foreground”. However, when a voxel projection counts less than 50% of
silhouette pixels, it is not systematically classified as “background”. Instead, the range
[20%-50%] is introduced and is used as temporary “edge” classification. This range was
chosen subjectively in order to compensate for the high incidence of voxel projections

misclassified as “background” over the final voxel occupancy classification.

5.2.3 Voxel Classification

The intersection of all voxel projections is used to determine the final voxel
occupancy state. Computing such intersection implies that a voxel is classified as
background whenever it projects over a region that pertains to a background region in
one or more images. This condition is highly restrictive, under sub-optimal silhouette
data, and can be relaxed if the number of cameras in use is sufficiently high [23]. In our
setup however, only 8 cameras are used and, thus, relaxing this condition, by requiring a
voxel to project in a background image region in, minimally, two or three views for it to
be classified as “background”, is near impossible. Instead, we propose to take advantage
of the “edge” classification, obtained during the evaluation of some voxel projections, as
shown in Algorithm 5.1. The final voxel classification is achieved according to the

following rules:

" Foreground: A voxel is classified as “foreground” if all voxel projections are
evaluated as “foreground”. In addition, a voxel remains classified as
“foreground” if only one voxel projection is evaluated as “edge” provided that

all other projections are evaluated as “foreground”.

® Background: A voxel is classified as background if at least one voxel projection
is evaluated as “background” or if at least two projections are evaluated as

6‘edge”.
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In other words, the main distinction with respect to the standard algorithm is the
increased tolerance in accepting to classify a voxel as “foreground” even if, in one view,
it projects onto an “edge” region where the silhouette pixels count is low (20% to 50%).
Also, a final verification is made to ensure that a minimal number of views (3 cameras in
our implementation) see the voxel as “foreground” in order for it to be classified as
“foreground”. This is done for the obvious purpose of avoiding a voxel to be
misclassified as “foreground” when this voxel projects outside the image boundaries in

too many views.

Algorithm 5.1. Final Single-resolution shape-from-silhouette algorithm

allVoxels[] = InitVoxelMap(desiredResolution);
for all voxel in allVoxels[]

edgeCnt=0; // count the number of “edge” projections
numVoters=0; // count the total number of voters
voxelOccupancy = foreground; // initially assume the voxelOccupancy to be foreground

// scan all camera views and reclassify the voxelOccupancy if one or more cameras see the voxel
I as background or if two or more cameras see the voxel as “edge”
for all cameras

voxelProj = GetVoxelProjFromLUT (voxel, camera);
projectionState = EvaluateVoxelProj(camera.GetImage(), voxelProj);

if (projectionState == OutsideImageBoundary)
continue; // skip this camera
else if (projectionState == foreground)
numVoters = numVoters+1;
else if (projectionState == edge)
numVoters = numVoters+1;
edgeCnt = edgeCnt+1;
else if (projectionState==background)
voxelOccupancy = background;
break; // abandon the inner loop (camera loop)
end if
if (edgeCnt >=2)
voxelOccupancy = background; // abandon the inner loop (camera loop)
break;
end if

end for

/l special case: to ensure that the voxel is not classified as foreground if the voxel projections
// lie outside the image boundaries in too many views
if ((voxelOccupancy == foreground) AND (numVoters < 3))
voxelOccupancy = background;
end

voxel.Classify(voxelOccupancy);

end for
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5.3 Voxel Coloring

Binary voxel occupancy information can be used as the only cue for human gesture
analysis [16, 17, 18, 23]. However, there exist numerous human postures that cannot be
estimated using solely voxel occupancy information. For example, Figure 5.6a shows a
scenario where the two arms cannot at all be recognized. However in Figure 5.6b, this
ambiguity is unfolded using voxel coloring which can serve as a logical complementary
cue to voxel occupancy information. Figure 5.7a and Figure 5.7b show another example
where binary occupancy voxels are not sufficient to clearly disambiguate between two
possible neck rotations but is however unfolded with colored models of Figure 5.7c and

Figure 5.7d.

RAR

Figure 5.6. Example of voxel coloring used to disambiguate arms position

S U
(a) (b) () C)

Figure 5.7. Example of voxel coloring used to disambiguate between two distinct neck rotations
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5.3.1 Surface Voxel Test

The proposed voxel coloring scheme is applied mainly to the surface voxels
because only surface voxels are visible and therefore rendered. A foreground voxel is a
surface voxel if at least one of its six nearest neighbors is classified as “background”.
However, when silhouette data is not optimal or the number of viewpoints is limited,
surface foreground voxels may very likely correspond to small background volumes
nearby (surrounding) the actual performer. Coloring these particular voxels results in
noisier texturing because color characteristics pertaining to the background are
mistakenly incorporated into the coloring equation. We propose to enhance the coloring
by eroding, in 3D, all surface voxels, thus re-classifying them as background. Applying
this procedure once or twice, depending on the actual resolution of the voxel map and on
the level of confidence about the reliability of the extracted silhouette, is sufficient and

results in excellent voxel coloring.

Furthermore, it may be advantageous to propagate surface voxel color to interior
voxels as well. Indeed, as Caillette [22] observed, it can facilitate post-processing
kinematics analysis if all voxels, not only the surface voxels, are colored. The 3D erosion
procedure can be applied in a loop to color all interior voxels layer-by-layer. In other
words, all exterior voxels would be colored and then removed from the model, in order

to color the underlying layer of surface voxels until all voxels have been colored.

5.3.2 Occlusion Detection using a Depth Buffer

The attribution of a color to each surface voxel needs to take into account the color
information from all views to ensure uniformity and smoothness all around the
reconstructed volume of interest [20]. At the same time, views that do not have a direct
access to a particular voxel need to be discarded from the coloring decision process. This
problem is referred to as occlusion. An occlusion occurs whenever a surface voxel

obstructs another surface voxel in a particular view. Figure 5.8 shows an example where
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the two back views do not have a direct access to the performer’s hands (arrows in red).
Therefore, only the views in front of the performer (arrows in green) may participate to

the coloring equation of voxels pertaining to the performer’s hands.

L

Figure 5.8. Example of a self-occluding human posture

Detecting cases of occlusion is primordial and many approaches have been
suggested in the literature. Such methods to compute highly photorealistic colored voxel
models are reviewed in [42]. Unfortunately, these methods are highly demanding
computationally because they require many traversals of the entire voxel data or are
iterative. These methods totally eliminate any real-time system aspirations. Even for
offline motion capture, the wait time in generating the colored voxel model, frame-by-

frame, remains an inconvenience.

Instead, we propose an effective occlusion detection mechanism based on the use
of a depth buffer for all image views. A depth image is initialized for each camera and
serves the purpose of maintaining the 3D distance to the closest surface voxel for every
image pixel. These depth buffers are computed according to Algorithm 5.2. Initially, all
pixels of a depth buffer are initialized at infinity. All surface voxels are traversed once, in

no predefined order. For each view, if the voxel projection is comprised within the image
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boundaries, the depth separating this voxel from the current camera is calculated. This is
achieved by transforming the 3D position of a voxel center such that it is expressed with

respect to the current camera frame. The depth is then evaluated as the magnitude of this
transformed 3D point (depth=\/x2+y_2+z2 ). Optionally, this information can be pre-
computed using lookup tables since viewpoints are static. All depth buffer pixels
comprised within the voxel projection are updated according to the newly calculated
depth. An update occurs if a pixel already holds a depth value greater than the new

calculated depth value.

Algorithm 5.2. Depth buffer creation

aliDepthBuffers[] = InitDepthBuffers (numCameras);
for all voxel € SurfaceVoxels
for all cameras
voxelProj = GetVoxelProjFromLUT (voxel, camera);
if (IsVoxellnsideImageBoundaries(voxelProj, camera))
depth = EvaluateVoxelDepth(voxel, camera)
UpdateDepthBuffer(allDepthBuffers[camera], depth, voxelProj);
end if
end for
end for

Examples of computed depth buffers are shown in Figure 5.9 for four different
views. The black dots represent the 3D depth position to the closest foreground voxel
that projects into each pixel in a view. When no foreground voxel projects into a

particular pixel, the depth is set to infinity and, therefore, no dot is displayed.

(@) (b) © (d

Figure 5.9. Occlusion detection using an image depth buffer for each view
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5.3.3 Voxel Visibility Analysis

Once the image depth buffers have been filled, surface voxels are traversed again.
The purpose of this second pass is to determine which views will participate in the final
color calculation for a particular voxel. An outline of the proposed voxel coloring

method is provided in Algorithm 5.3.

Algorithm 5.3. Outline of the voxel coloring algorithm

allDepthBuffers[] = ComputeDepthBuffers(numCameras);
allColors[] = InitColorBuffer(numCameras);
for all voxel € SurfaceVoxels
numColors=0;
for all cameras
voxelProj = GetVoxelProjFromLUT(voxel, camera);
if (IsVoxellnsideImageBoundaries(voxelProj, camera))
depth = EvaluateVoxelDepth(voxel, camera);
if (TestNoOcclusion(voxelProj, depth, allDepthBuffers[camera]))
allColors[numColors] = EvaluateColor(voxelProj, colorVideo[camera));
numColors = numColors+1;
end if
end if
end for
if (numColors > 0)
finalColor = EvaluateFinalColor(allColors[], numColors); // equation (5.1)
voxel.SetColor(finalColor);
else
end for

The depth distance to each surface voxel center, in each view, is compared against
the depth value of the corresponding image depth buffer. Testing only the voxel center to
detect an occlusion is sufficient here because, in the first pass, calculated depths were
written into all pixels pertaining to their voxel projections. Doing so in this second pass

would have been redundant. If the calculated voxel depth is equal to the value of the
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depth buffer', then no occlusion is found. In such case, the color of this voxel projection
is evaluated, from the original color video, and added to the color equation. Once all
views have been evaluated, the color from all non-occluding (visible) views is averaged
(per color channel) to determine the final color for this voxel according to following

equation.

visible _ proj
ProjColory.,(img)
‘.mgz=1 RGB ( 5 . 1 )

visible _ proj

FinalColoryg, =

5.3.4 Remarks

This voxel coloring approach is similar to the one proposed by Kehl et al. [20] with

some key improvements:

1) InKehl ez al.’s method [20] only the voxel centers are maintained in the lookup
tables instead of the full voxel projections. This approximation leads to an
insufficient condition for occlusion detection, especially when the voxel
resolution is unbalanced with respect to the working image resolution. For
example, if a voxel projects at position (200, 193) and a voxel behind projects
at position (201, 192), no occlusion would be detected. However, it is typical
that a voxel projection occupies a surface of around 10 pixels, maybe more,

depending on the image resolution.

2) For special cases where all views are disqualified, according to the voxel
visibility test (of section 5.3.3), the color equation (5.1) cannot be used. Instead,
the color contained in the “less occluded view” is assigned as the final color for

such a voxel. The “less occluded view” is the one where the difference between

! Two depth distances are considered to be equal if they admit a difference of less than the dimension of a
voxel (i.e. distance between two consecutive voxel). Optionally, this criterion can be relaxed to twice or

thrice the dimension of a voxel for more smoothness.
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the voxel’s depth and the occluding voxel’s depth is the smallest. This special
case only occurs for few voxels that are not directly seen by any camera. For
example, in Figure 5.8, voxels under the performer’s torso and legs are not
viewed by any camera (these few voxels are generally unimportant to the
overall reconstruction). This enhancement was omitted in Algorithm 5.3 for

clarity purposes.

3) In situations where multiple views are not occluded, views in which a voxel
projects into an edge region (according to the silhouette occupancy data) are
excluded from the voxel coloring equation. This is done in order to prevent, as
much as possible, for background colors, in images, to be mistakenly
incorporated into the voxel model. This enhancement was also omitted in

Algorithm 5.3 for clarity reasons.

4) A mechanism for propagating color to all interior voxels is elaborated by re-

applying this coloring procedure layer-by-layer.

A direct comparison of performance with Kehl et al’s work will be discussed in

section 5.4.2.

5.4 Results

The purpose of this section is to evaluate the results of the aforementioned voxel-
based volumetric reconstruction algorithm. These results were achieved by integrating all
modules developed throughout this project. The multi-camera system presented in
Chapter 3 was utilized to synchronously acquire real video data featuring a human
performer at a frame rate of 30 fps. A frame resolution of 320x240 was used because it is
sufficient for the purpose of shape-from-silhouette reconstruction. Hence, the multi-
camera network was re-calibrated for this resolution. Two different silhouette extraction

implementations were utilized to perform binary silhouette data extraction. Results
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presented in sections 5.4.1 to 5.4.6 utilize a statistical Mixture of Gaussians segmentation

algorithm [8], which requires a priori knowledge of the background but operates faster.

Results presented in section 5.4.7 were generated using an innovative region-based

segmentation algorithm [9, 10] which removes this constraint but is slower to compute.

All results were computed with a working volume optimized to best fit the performer.

The voxel resolution was set at 128° such that each voxel occupies a volume of

approximately (1.5cm)’.

This analysis is qualitative and is based on perceptual observations of reconstructed

voxel models. However, our evaluation methodology remains formal and is subdivided

as followed:

In section 5.4.1, multiple human body reconstruction results are shown to
demonstrate the generality of the proposed method against various human

postures.

In section 5.4.2, our results are compared to results reported by other authors in

the field of markerless motion capture.

In section 5.4.3, some distortion is applied to the extrinsic camera parameters to

demonstrate the crucial importance of accurate multi-camera calibration.

Section 5.4.4 demonstrates the importance of using a sufficient number of
viewpoints, well distributed over the full workspace, in order to obtain finer

reconstruction results.

Section 5.4.5 shows successful volumetric reconstruction results using noisy,

real-world, silhouette data.

Section 5.4.6 demonstrates reconstruction results related to the specific

application of monitoring a pianist’s motion.

Finally, section 5.4.7 shows reconstruction results using a novel region-based
silhouette extraction method [9, 10]. This new segmentation algorithm enables

human silhouette extraction in complex and evolving scenes.
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5.4.1 General Result Analysis for Various Human Body Postures

Before evaluating reconstruction results in the context of the piano pedagogy
application, results generated from arbitrary human postures are first presented to
demonstrate the generality of the proposed solution and for comparison purposes with
other implementations suggested in the literature. These results are shown in Figure 5.10.
In this figure, images from the first row correspond to a frame of original video, for each
evaluated posture. The second and third rows show two reconstructed views for each

posture.

Figure 5.10a shows a simple example which does not admit any apparent case of
occlusion. In this posture, the performer is reconstructed almost flawlessly. In particular,
the proposed voxel coloring algorithm is very powerful at reconstructing subtle details
such as wrinkles on the t-shirt. The example of Figure 5.10b is more complex because
the two arms are crossed and they occlude the torso. This is a clear case where voxel
coloring is required to disambiguate the two hands position and, furthermore, to
disambiguate that the left arm is under the right arm. Figure 5.10c is another simple
example which is well reconstructed as observed in the two displayed views of the
reconstruction. Figure 5.10d and Figure 5.10e show a left and a right torso rotation. In
these two examples, few cases of self-occlusion can be raised. Indeed, in Figure 5.10d,
the right arm occludes the torso for views facing the performer and the upper legs for
views positioned on top of the performer. Figure 5.10e is a similar but reversed example.
In both examples, occlusions are resolved using the remaining views such that the two
hands are successfully separated from the rest of the body. The problem of occlusion is
also well handled, from a texturing perspective, since the two arms are colored
distinctively from the t-shirt and pants color. Figure 5.10f is the most interesting and
complex example. Not only does the left leg and left arm occlude the torso but they also
create a local concave region which is difficult to reconstruct using shape-from-
silhouette and especially with a limited and fixed number of viewpoints. This concavity

is located nearby (in front) the lower-torso. This example results in few background
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voxels being misclassified as foreground. These artifacts also slightly perturb the voxel

coloring in this concave area but the overall reconstruction remains reliable.

Original
Camera view

Reconstructed
Volume

Reconstructed
Volume (alt. angle)

(a (@ (e)

Figure 5.10. Various test cases of full-body reconstruction

Figure 5.11 shows an example where only the head is reconstructed. The working
environment was defined to be smaller such that each voxel occupies a smaller volume
thus resulting in a reconstruction with finer details. Figure 5.11a and Figure 5.11b show
2 (out of 8) synchronized camera views. Figure 5.11c and Figure 5.11e show two side-
views of the reconstructed model. From these two images, we can observe that the shape
of the head (occupancy) is reconstructed with good accuracy since the nose and the chin
contours are well defined. The voxel coloring is applied with reasonable accuracy and a
clear distinction between skin and hair color can be made. Figure 5.11d shows a front
view of the reconstructed head. Obviously a finer resolution would be required to

reconstruct the facial expression but it is not the purpose of the current project.
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(©) (d) (e)

Figure 5.11. 3D head reconstruction with voxel coloring

5.4.2 Qualitative Comparison with Other Volumetric Reconstruction Methods

This section emphasizes on qualitative improvements that are achieved with the
proposed implementation in comparison with results demonstrated in other markerless
motion capture systems described in the literature. Figure 5.12 shows a comparison

between reconstruction results reported in several of these implementations.

Figure 5.12a shows a volumetric reconstruction borrowed from Cheung et al.’s
paper [19]. Perceptually, this result is very precisely rendered in a photorealistic manner.
However, the reconstruction method of Cheung et al.’s is achieved by registering
iteratively multiple frames of video spatially, and over time as well. Indeed, the
reconstructed volume of Figure 5.12a was achieved by asking a performer to stand still

on a turntable for 25 frames of video. Many viewpoints are artificially created this way.
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However, this is contrary to what we are trying to achieve. Instead, we are interested in
reconstructing the human shape independently, frame-by-frame, in order to monitor a
moving performer over time. Cheung et al. did extend their temporal shape-from-
silhouette framework to handle the specific case of moving articulated objects (i.e. the
human body) but lacks of robustness are denoted by Sundaresan [23] for postures where

there are self-contact (one or more limb touching other body parts).

Cheung et al. Caillette Kehl et al.
(2003) (2006) (2006) Proposed method
1 i A,

(b) © (d)
Figure 5.12. Comparison of the proposed voxel reconstruction scheme with other works presented in

the literature. Source: (a), (b) and (c) reproduced from [19], [22] and [21] respectively

Figure 5.12b shows a volumetric reconstruction result borrowed from Caillette’s
work [22]. The voxel coloring method is very limited because no clear voxel visibility
test is performed to detect cases of occlusions. In addition, the voxel occupancy
information is coarse because very few camera sensors are utilized for the reconstruction,
in order for the overall system to operate in real-time. Consequently, the quality of the
volumetric reconstruction obtained by Caillette [22] is only acceptable for non-occlusive

and simple human postures.

Figure 5.12¢ shows a volumetric reconstruction result borrowed from Kehl ez al.’s
work [20,21]. Their voxel coloring implementation is similar to the framework proposed
in this thesis. However, this result is subjectively of a lower quality than the result
achieved in our work and displayed in Figure 5.12d. Indeed, in Figure 5.12c, it is easy to

notice that few voxels, belonging to head and legs regions, are incorrectly colored in red
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(the color of the t-shirt). This is due to the fact that occlusions are detected only using the
center of voxels and not the full voxel projection. The comparison with Kehl et al.’s
algorithm is further extended in Figure 5.13. Figure 5.13a and Figure 5.13c show two
volumes reconstructed using Kehl et al.’s original algorithm. In both examples, the
applied voxel coloring is noisy. In Figure 5.13b and Figure 5.13d the volumetric
reconstruction was achieved using the proposed algorithm. From these latter examples, it
is possible to notice that the proposed enhancements perceptually result in a smoother

and overally improved voxel coloring.

Kenhl et al.’s algorithm (2006) Proposed algorithm

© (d)

Figure 5.13. Extended comparison between Kehl ef al. [20]

and the proposed voxel coloring algorithm
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5.4.3 Importance of Precise Camera Calibration

The objective of this test is to show the importance of precise camera calibration
for proper fusion of multi-view images in 3D. Chapter 4 assessed numerically the
accuracy of our camera calibration procedure. In this section, we verify qualitatively the
effect of calibration inaccuracies to resulting voxel data of reconstructed performers. To
do so, all translation parameters (T, Ty, T,) and/or rotation parameters (Ryx, Ry, R;) were
distorted, in all cameras, by a random value within the range +2.5% or 5% of each
initial parameter value respectively. Applying very minimal modifications to the rotation
or the translation parameters have important repercussion on the average reprojection

error as shown in Table 5.2.

Table 5.2. Impact of introducing noise to the rotation (R) and translation (T)

camera parameters on the average reprojection error (in pixels)

Test case Average reprojection error Std. Deviation
[noise level] [pixel] [pixel]
No noise 0.3508 0.2562
T-Noise: £2.5% 4.1533 2.2329
T-Noise: £5% 8.1655 3.7776
R-Noise: £2.5% 4.3159 2.4667
R-Noise: 5% 8.5785 4.6116
T-Noise: +2.5%, R-Noise: £2.5% 9.4270 3.4750

For each test case, a shape-from-silhouette reconstruction was performed. Figure
5.14a shows a reconstruction result with very precisely calibrated cameras. Very few
noisy voxels can be identified in this model and are mainly due to imperfections in the
computed silhouette data. In the model of Figure 5.14b, translation parameters were
distorted by up to +2.5% in all cameras. The global shape of the human body remains
recognizable and no clear perturbation is heavily noticeable. In the model of Figure
5.14c, the distortion to translation parameters was accentuated to +5% and we can notice
that the right arm starts disappearing and that the head is incorrectly reconstructed. In
Figure 5.14d and Figure 5.14e the noise was applied to the rotation parameters instead.
Reconstruction imprecision is already noticeable with a perturbation of +2.5%. The

imprecision is significantly accentuated when the perturbation is of £5%. Finally, Figure
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5.14f shows a case where noise (2.5%) was applied to both translation and rotation
parameters. This latter case lead, subjectively, to the worst shape reconstruction (partial

loss of both arms).

T-Noise: +2.5% T-Noise: 5% T-Noise: 0% T-Noise: 0% T-Noise: +2.5%
R-Noise: 0% R-Noise: 0% R-Noise: +2.5%  R-Noise: 5% R-Noise: +2.5%

No Noise

”
(a) (b) (c) (d) (e) ®

Figure 5.14. Incidence of the camera calibration precision on the reconstruction accuracy

From this analysis, it is clear that calibration accuracy is a significant requirement
for adequate shape-from-silhouette reconstruction. A small perturbation of only +2.5%
on the rotation parameters, corresponding to an average reprojection error of
approximately 4.32 pixels, is sufficient to introduce noticeable artifacts into the
reconstructed volume. This demonstration thus shows the crucial importance of accurate
multi-camera calibration with sub-pixel precision when performing shape-from-

silhouette reconstruction.

5.4.4 Effect of Reducing the Number of Viewpoints

Besides precise camera calibration, another important factor for shape-from-
silhouette reconstruction resides in the number of viewpoints and their positioning. The
purpose of this test is to verify the behavior of the implemented shape-from-silhouette
algorithm when the number of views is critically reduced. Figure 5.15 shows
reconstruction results for multi-camera setups of 3 to 7 cameras. In each test, the views

were positioned to surround, as uniformly as possible, the targeted performer.
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From these results, it is possible to observe that the number of viewpoints has a
decisive impact on the quality of the reconstructed volume. This statement comes from
the theoretical definition of shape-from-silhouette. As more views are introduced to the
volumetric intersection, the resulting reconstructed volume is smaller, thus yielding to a
more refined model closer to the shape of the real performer. When only 3 views are
used, as per Figure 5.15a, the reconstructed volume is missing many details. Significant
improvements are noticed with the incorporation of only one additional camera, in
Figure 5.15b, but the reconstructed volume remains coarse. The volume reconstructed
from 5 cameras (Figure 5.15¢) is smaller but remains imprecise. Additional details about
the human body are discovered by incorporating a 6™ and a 7™ camera, as per Figure
5.15d and Figure 5.15e. In particular, the use of 7 cameras provides finer details related

to the arms and legs.

3 cams 4 cams 5 cams 6 cams 7 cams

(@) (b) © @ (e)

Figure 5.15. Incidence of the number of views in the reconstruction accuracy

At some point, increasing the number of viewpoints will barely improve the
resulting reconstruction. The use of many viewpoints can however provide additional
robustness because of inherent redundancy among views. It however increases the cost
of the application as well as reduces its mobility. A compromise must therefore be made.
We observe that 8 cameras are sufficient for full body reconstruction provided that

silhouette data can be extracted with sufficient exactitude.
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5.4.5 Robustness against Noisy Silhouette Data

In real-world applications, the working environment is typically complex making
the silhouette extraction procedure, from all views, a very difficult task to achieve.
Consequently, real-world silhouette data are often inaccurate. In the context of the piano
pedagogy application, silhouette extraction is complex due to the high amount of
shadows which can compromise the output of many statistical-based methods relying on
an a priori model of the background [8]. In this particular application, shadows are
introduced mainly because of the small distance separating the performer from the
keyboard. Even with adequate compensation, many shadowed pixels remain
misclassified as foreground. This effect is shown with the passage from color images, in

Figure 5.16 to silhouette images, in Figure 5.17.

Fortunately, many of these imperfections are cancelled (eliminated) in the resulting
voxel model. Indeed, with shape-from-silhouette, a group of misclassified foreground
pixels will be carried into a 3D voxel only if all other views also agree on foreground
occupancy for that voxel. This only occurs, in Figure 5.17, near the hands of the
performer as a few voxels pertaining to the keyboard are incorrectly carried into the
model. A more important problem is the presence of holes in silhouette data (foreground
pixels misclassified as background). This situation occurs whenever the clothing of the
performer is too similar to the background color for certain groups of pixels. In such
case, the error is almost systematically carried into 3D, resulting in a few holes in the

reconstructed model.
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Figure 5.17. Inaccuracies in silhouette data due to the

complexity inherent to real-world environments
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5.4.6 Example of Application: Piano-Playing Performance Evaluation

The application of markerless motion capture in the context of piano-playing
performance evaluation and prevention of injuries is particularly challenging because of
the complexity of the working environment and because of the complex posture of
pianists. On one side, shadows of the pianist over the keyboard make the silhouette
extraction a difficult task which tempers the reliability of the volumetric reconstruction
module. On the other hand, the standard pianist posture is a highly occlusive posture that
admits a large concave region. Indeed, the two arms and the torso are self-occluding in
the front/back views (i.e. Figure 5.18d). The left arm also occludes the right arm, or vice-
versa, in side views (i.e. Figure 5.18c). In addition, a large concave region is present and
is delimited as the region between the two arms and legs making difficult the separation

of the two arms (i.e. Figure 5.18a, and Figure 5.18b).

Nevertheless, reliable volumetric reconstruction is obtained with different subjects
and clothing. Figure 5.18 shows 4 (out of 8) views of a pianist with long hair and long
sleeves. Figure 5.19 demonstrates that reliable reconstruction is achieved. In particular,

both arms are reasonably well separated. Figure 5.20 shows reconstruction results for a

second pianist with different clothing and hair style.

(b) © (d)

Figure 5.18. Four different color and silhouette views of a pianist
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(@) (b) (c) G

Figure 5.19. Four different views of a reconstructed pianist

(@) (b) (d)

(e) () (9) (h)

Figure 5.20. Four camera and reconstructed views of a second pianist performer

Figure 5.21 shows the reconstruction of multiple frames of video to show the
robustness of the proposed algorithm over time. Since the amplitude of motion between
consecutive frames of video is very small and difficult to perceive, displayed images
admit a gap of at least 10 frames. The 3 frames displayed in the first row are each
separated by 10 frames (0.33 second) and show a posture where the two hands and arms
are well separated over the keyboard, and easier to reconstruct. The second and third

rows show multiple frames of video where the hands are positioned closer to each other
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making the posture more difficult to reconstruct because of an increase in self-occlusion

and local concavities. Nevertheless, volumetric reconstruction is still achieved reliably.

Frame 1400 Frame 1410 Frame 1420

Frame 1490 Frame 1500

Frame 1530 ‘ Frame 1540 i Frame 1550

Figure 5.21. Shape-from-silhouette over time for the piano pedagogy application

Frame 1480

5.4.7 Towards Human Posture Reconstruction in Complex Scenes

The previous section showed several reconstruction examples applied to the
context of the piano-playing performance evaluation application. These results were
reconstructed using a statistical silhouette extraction procedure [8] which is fast to

execute but admits several drawbacks:

®  An a priori model of the background is required and therefore, the background

needs to remain static (only the targeted performer is allowed to move).

® The performer’s clothing must be reasonably contrasting with respect to the

background. We denoted experimental problems for the case of dark clothing
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over a dark background. For example, performers with very dark hair are

incorrectly segmented in the top view as the piano bench is dark as well.

® Shadows, on the keyboard, are omnipresent yielding to inaccurate
reconstruction of the two hands. Many voxels pertaining to the keyboard, near

the hands, are carried into the model.

For the purpose of the piano-playing performance evaluation application, we
attempted to replace the use of a classical statistical segmentation scheme with a novel
region-based segmentation algorithm [9, 10] developed concurrently to this project. As
explained in section 5.1, region-based segmentation separates the content of an image
into several groups of pixels based on color and texture similarities. Regions of interest
are hand-selected and examples are shown in Figure 5.22a to Figure 5.22d. Then,
selected regions of interests are tracked over time automatically in the multiple video
streams. Here, the problem of shadowed regions on the keyboard is handled by the fact
that these regions remain highly contrasting with respect to hand skin color. Shadowed
keyboard pixels are thus clustered in a separate region than hand pixels. With an
improved silhouette extraction module, the performer is potentially reconstructed with
even more accuracy as demonstrated in Figure 5.22¢ to Figure 5.22h. In particular, in
Figure 5.22f and Figure 5.22g, it is possible to notice that noisy voxels under the two
hands, pertaining to the keyboard, have completely disappeared. On the counter part, a
problem with region-based technique resides in the fact that large background regions
may be clustered within the foreground object. This particular case occurs in the
silhouette view of Figure 5.22b where a group of background pixels, located between the
right arm and the right leg, is incorrectly segmented as “foreground” yielding to noisy

voxels surrounding the right upper-arm, as shown in Figure 5.22g.
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Cluster of pixels incorrectly segmented as
“foreground” between the right arm and right leg

() (h)

Small imperfections surrounding the right arm are
observed, but are disambiguated with voxel coloring

Figure 5.22. Shape-from-silhouette reconstruction using silhouette data

obtained from a region-based segmentation method [9, 10]

Figure 5.23 shows another example of volumetric reconstruction with silhouette
data generated from the region-based segmentation algorithm of [9, 10]. This second
example also exhibits a more effective reconstruction of the performer’s hands recalling
that region-based segmentation is robust against the problem of shadowing. On the
counter part, this segmentation scheme is highly sensible to the individual configuration
of many threshold parameters that need to be manually tweaked and that depend on the
actual content of the input videos. Overall, region-based segmentation has high potential
to the field of motion capture in complex scenes. However, some work remains in order

to increase the ease-of-use of this segmentation scheme.
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Figure 5.23. Another example of 3D reconstruction using region-based segmentation [9, 10]

5.5 Chapter Summary

This chapter presented a shape-from-silhouette reconstruction implementation
which achieves adequate full body voxel reconstruction in relatively complex scenes.
Difficult cases of self-occlusion and local concavities, proper to complex pianist
postures, are handled in a robust manner. The enhanced voxel coloring scheme proposed
in this work, using dense depth images, enables accurate voxel visibility tests and
smooth, logic and meaningful color attribution for all surface voxels surrounding the
reconstructed performer with the possible extension of propagating the color to interior

voxels as well.

Reconstruction results presented in this chapter were proven to be of sufficient
quality to provide reliable cues to subsequent modules dedicated to the analysis of
human postures from a kinematic perspective. In particular, the implemented voxel
coloring scheme surpasses, in perceptual accuracy, most other schemes proposed in the

literature related to markerless motion capture systems. Emphasis has been put on the
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necessity of accurate multi-camera calibration, hence validating, using a concrete real-
world application, the calibration technique elaborated in Chapter 4. Finally, it has been
demonstrated that the proposed reconstruction algorithm performs well even in the
presence of noisy silhouette information and with complex, self-occluding, human body
postures and, in particular, pianist postures. Furthermore, enhanced reconstruction results
were obtained by using a novel region-base silhouette extraction scheme which

eliminates the problem of shadow pixels.
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Chapter 6. Conclusion and Future Work

This thesis focused on specific areas related to the problem of markerless human
motion capture. In particular, this work addressed the issues of multi-camera system
design, multi-camera calibration and volumetric reconstruction with coloring. This final
chapter presents a summary of the research conducted with a special emphasis on its
major contributions. The last section examines possible directions for future

enhancements.

6.1 Summary

This thesis started off by introducing the reader to the problem of motion capture
and, in particular, to the challenges related to gesture monitoring of pianist musicians
using solely passive vision technologies. In Chapter 1, techniques for computerized
motion capture were distinguished into two major categories. Marker-based solutions
correspond to the state-of-the-art in motion capture, from a commercial perspective,
because of their high robustness in accurately representing the kinematic posture for a
wide variety of human body configurations. On the other hand, marker-based solutions
are cumbersome from the fact that performers must wear multiple markers which can
interfere with their natural motion. Therefore, extensive research has been performed,
over the last decade, regarding markerless (vision-based) motion capture solutions.
Unfortunately, lacks of robustness and generality in many areas of the whole solution

currently prevents markerless systems from hitting real-world markets.

A review of current advances related to the field of motion capture has been
presented in Chapter 2. Both marker-based and markerless systems have been reviewed.
Special emphasis has been put on markerless systems because it relates to the objectives
of this research work. From the analysis of existing markerless systems, we could

identify several limitations. In particular, it has been raised that several simplifications
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were introduced in early modules tempering the robustness of any subsequent modules
and perhaps of the whole motion capture application. Hence, this thesis focused on
increasing the overall robustness of specific aspects: multi-camera system design, multi-
camera calibration, and volumetric reconstruction and coloring, in order to complement
previous work of our group on video segmentation, and to achieve a fully integrated

markerless human motion capture system.

Surprisingly, multi-camera system design is a topic which is discussed very briefly
in most of the work reported in the literature. However sub-optimal multi-camera system
design can yield to inaccuracies which are carried over throughout the rest of the
application. Chapter 3 analyzed the design of a reconfigurable multi-camera system and
covered the topics of hardware selection, architectural system design, and inter-camera
synchronization. The outcome of this work resulted in the elaboration of a high-level
software framework for generic multi-camera applications and in the construction of a
fully operational synchronized multi-camera acquisition setup that was extensively used

for experimental validation of all aspects of the research work.

The second major module developed within this thesis relates to the problem of
multi-camera calibration. In Chapter 2, this problem was defined as the estimation of
intrinsic camera parameters, to define the internal perspective projection behavior of
camera and lens hardware, and the estimation of extrinsic camera parameters, which are
concerned about the registration of one or many cameras to a common global reference
frame. Two types of calibration techniques were evaluated: classical approaches, which
are based on the use of complex calibration rigs, and self-calibration approaches which
are based solely on image matches that correspond, in 3D, to a cloud of virtual
calibration points. For the purpose of multi-camera calibration, classical approaches are
not suitable because calibration rigs are cumbersome and they imposé severe constraints
on the relative positioning of the multiple cameras. In Chapter 4, a complete framework
for generic multi-camera calibration has been presented. The paradigm of generating a
cloud of virtual calibration points, by waving a simple marker, was utilized to achieve

this task.
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Finally, the third module developed throughout this project consisted of the
implementation and refinement of a shape-from-silhouette volumetric reconstruction
algorithm. In Chapter 2, it has been well established that voxel data, acquired from the
3D intersection of multiple silhouette images is a predominant cue for human kinematics
estimation in full 3D space. In Chapter 5, a shape-from-silhouette voxel reconstruction
algorithm has been proposed to estimate both the binary occupancy and the color
component of voxels that subdivide a pre-defined working environment. Many results
were presented and analyzed for the reconstruction of both generic human body postures

as well as complex pianist postures.

6.2 Contributions

This thesis provided four major contributions to the field of markerless motion

capture applications and they relate to the three activities discussed within this work.

1) Multi-camera system design and integration

Chapter 3 achieved a formal analysis about reconfigurable multi-camera system
design which aimed at providing superior quality input data to subsequent modules
within the whole markerless motion capture framework. Specialized high-quality camera
instrumentation, optimized for motion capture and equipped with a global shutter, was
used to acquire video data. All cameras were integrated with proper optics and were
synchronized with very high accuracy surpassing other synchronization mechanisms
proposed in other works related to motion capture [22, 24]. A software package was
finally developed to facilitate the implementation of multi-camera applications and that
abstracts low-level interaction with the camera hardware layer. The design of an optimal
multi-camera system is further analyzed in Chapter 5 with an experimental evaluation of
the minimal number of cameras to be integrated in a setup for realistic human motion

capture of a single subject.
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2) Multi-camera system calibration framework

The multi-camera calibration procedure proposed in Chapter 4 distinguishes itself
from alternative implementations by its accuracy, case-of-use, flexibility and
repeatability. The accuracy of the proposed procedure was assessed for a variety of
multi-camera networks. A final average reprojection error below 2 pixel was
systematically obtained, thus leading to superior calibration in comparison to similar
methods of Chen et al. [36] and Ihrke et al. [37]. The proposed method is easy to
perform for non-expert users as it does not require any precise and cumbersome
measurement in the 3D workspace. Furthermore, the use of a dual-marker calibration
instrument allows for the extrinsic calibration and the estimation of the global scale
factor to be performed in a single step. The method is flexible to calibrate a wide variety
of multi-camera networks with variable number of cameras. The proposed
enhancements, using a weighted graph analysis, managed to achieve very precise initial
estimate of the extrinsic calibration which is refined through an efficient bundle
adjustment implementation. The proposed method is easily repeatable and runs in a
timely manner, in comparison with Svoboda et al.’s framework [38]. This is clearly
beneficial since the system must be re-calibrated upon any modification on the
positioning of one or more camera. Finally, the high precision of the proposed multi-
camera calibration algorithm was further validated, in Chapter 5, using real shape-from-

silhouette reconstruction examples.

3) 3D reconstruction with voxel coloring

The shape-from-silhouette reconstruction algorithm presented in Chapter 5 has
proven its capability to provide representative 3D reconstruction of human subjects and
especially pianist performers. The proposed reconstruction algorithm is robust against
noisy silhouette data. Moreover the proposed voxel coloring algorithm provides sound
texture mapping with subjectively superior accuracy in comparison to the schemes

introduced by Caillette [22] and Kehl er al. [20, 21], while being deterministic (not
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iterative). Many examples of reconstruction were shown, and especially within the
context of piano-playing, which poses several challenges related to self-occlusion and
local concavities. Also, many shadowing problems were identified, especially over the
keyboard, making difficult the use of statistical segmentation methods. We resolved this
shadowing problem by merging the proposed acquisition and reconstruction framework
with an innovative region-based video segmentation technique [9, 10] recently developed

by other members of our group.
4) The formalization of a solid framework for markerless motion capture

Combining an optimally designed and calibrated multi-camera acquisition system
with innovative silhouette extraction techniques and a robust voxel reconstruction
algorithm led to a solid and complete framework for full 3D shape modeling of the
human body. This framework removes several constraints related to the performer and
the working environment and can be successfully applied to real-world examples such as
that of piano-playing performers. The end result is a complete reconfigurable system for
markerless human motion capture capable of operating in complex environments found

in realistic scenarios.

6.3 Future Work

This thesis presented the development and implementation of a specific set of
modules related to markerless motion capture. In each of these modules, some extensions
can be envisioned. The multi-computer system designed in Chapter 3 could be enhanced
into a well-integrated distributed system with the implementation of a formal message-
passing inter-computer communication protocol, thus allowing all video streams to be
processed simultaneously upon availability without any manual transfer between
computing nodes. The multi-camera calibration procedure presented in Chapter 4 could
be enhanced to use natural scene features as calibration points rather than artificially

created features obtained by waving a marker. This could allow the calibration to be
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performed on-the-fly, thus decoupling calibration and video data, and it could even allow
cameras to move during the recording of human motion to better track the performer.
Unfortunately, the problem of finding a sufficient number of matches, due to very large
baselines and orientation changes among the viewpoints is currently prohibiting this
enhancement with the number of cameras available. The shape-from-silhouette
reconstruction scheme of Chapter 5 has proven to be robust even against imperfect
silhouette data. However, it would be interesting to investigate how 3D reconstruction
data could be fed back to the silhouette extraction module, using depth as a
supplementary cue to color and 2D texture information, to progressively improve
silhouettes and, inevitably, 3D reconstruction data for subsequent frames of video.
Finally, from a system-level perspective, the next logical step towards the deployment of
our motion capture application would be to analyze voxel data in order to fetch higher
level information about the human posture such as kinematics information. This is the
purpose of subsequent activities, related to markerless motion capture (human pose

estimation and human gesture analysis) and they remain open.
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Appendix A.Firewire 1394b Bandwidth Allocation

Table A.1. IEEE1394b bandwidth consumption for Flea2 color cameras

operating at various video formats in free-run video mode

320x240 15 fps (Yllé‘t’);g 160 pixels  320Bpp 2512
320x240 30 fps ‘({Hx):s)z 320 pixels 640 Bpp 122
320x240 60 fps ‘({}16\;313)2 640 pixels 1280 Bpp 6
640480 15 fps ’((B‘;: ;)1 640 pixels 960 Bpp g2
640480 15 fps ’({g‘é‘g 640 pixels 1280 Bpp 6
640x480 15 fps (l;flt?s:) 640 pixels 1920 Bpp 4
640x480 30 fps ‘((}?{,: ;)1 1280 pixels 1920 Bpp 4
640x480 30 fps ?&;‘g 1280 pixels 2460 Bpp 3
640x480 30 fps 340533) 1280 pixels 3840 Bpp 2
640x480 60 fps ‘({112“{):; ; 2560 pixels 3840 Bpp 2

T'The maximal number of simultaneous isochronous channel is 16.
2 Current 1394b chipset only supports up to 4 simultaneous DMA channels. Some 1394a chipset will
support up to 8 simultaneous DMA channels.

Table A.l shows the bandwidth allocation for various video formats in free-run
(isochronous) video mode. In free-run video mode, video data is transmitted from the
camera to the Firewire bus using a pre-allocated guaranteed bandwidth. The bandwidth
requirement for each camera is determined by the pixel format (number of bit per pixel)
and the number of pixels per packet. The total packet size is calculated using these two
values and is expressed in terms of Byte per packet. The maximal amount of video data

per isochronous packet for the IEEE1394b bus is 8192 Bytes'. The maximal data packet

11t should be noted that there is 8000 ISO cycles per second and thus, isochronous video transmission only
consumes approximately S00Mb/s worth of the total bandwidth of the IEEE1394b bus (800Mb/s). The

extra bandwidth is reserved, in part, for asynchronous communication (camera control, etc).
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size is used to determine the theoretical number of cameras that can be connected to an
IEEE1394b bus.

An example of bandwidth consumption computations for the 640x480@30fps
(YUV411) video format is shown. The required number of pixels per packet is provided
by the manufacturer [51] for each video format. For this particular video mode, 1280
pixels are transferred per packet. The size of a pixel, in the YUV411 pixel format, is 12
bit. Thus, the total number of Bytes per packet (Bpp) is calculated such that:

1280pixels X 12bit x 1Byte  1920Byte
packet  pixel  8bit packet

= 19208pp (A1)

The maximal packet size is then divided by the number of Bytes per packet for one
camera. This determines the theoretical number of cameras that can be connected to a

single IEEE1394b bus in the selected video format:

8192Bpp

MaxC = =|4.26 | = 4 camer
axCameras [19208ppJ |_ J cameras , (A.2)

It should be noted that other restrictions need to be considered in determining the
effective maximal number of cameras that can be connected to an IEEE1394b bus:
=  The maximal number of isochronous channels (16)
» The maximal number of simultaneous DMA channels (typically 4 to 8)
= Saturation on the PCI bus (controlled by the operating system)
= The size of FIFO buffers (on 1394 cards) that are used to recover for PCI

saturation issues
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Appendix B. Triangulation of Image Points in the 3D Space

The 2D image projection of any known 3D world point can be computed directly
using the camera calibration parameters according to the equations presented earlier in
section 2.4.1. However, the loss of information in the passage from 3D to 2D-perspective
disables the reverse operation of computing the position of a 3D world point from its 2D
projection. Indeed, Figure B.1 shows the existence of an infinite number of 3D points (a

ray of 3D points) that project onto the same 2D pixel position.

Back-projected 3D ray of
all 3D points that project to Po

Image po
Po

Camera's optical \

center

Figure B.1. Back-projection of an image point in 3D space

In order to reconstruct the world position of a 3D point, its corresponding pixel
projection is required in at least two image views. This process is referred as
triangulation. Figure B.2 shows two distinct image views where Po and P; are the image
coordinates of a same 3D feature point (Psp). If the two views are perfectly calibrated,
both Po and P; can be back-projected and intersected in the 3D space to the exact
position corresponding to Psp. Unfortunately, in real-world applications, cameras are
never perfectly calibrated and thus, back-projecting multiple 3D vectors will never result
in an exact intersection. Taking this observation into account, several methods were

proposed to approximate the intersection of two or more 3D vectors [33, 46, 52].
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Pap

Po P1

e I

Ocamo Ocam1

Figure B.2. Naive triangulation of 2 image points in 3D space

In this work, triangulation is used in several occasions within the calibration
procedure presented in Chapter 4. Two different methods were implemented and used:
middle-point [46, 52] and linear least-square (Linear-LS) [46] triangulation.

Mathematical derivations for those two methods are provided for completeness.

Middle-Point Triangulation

Middle-point triangulation is concerned about computing the segment of
intersection between two 3D vectors, as shown in Figure B.3, rather than the exact point
of intersection. This segment of intersection is perpendicular to both 3D vectors. The

reconstructed point Pp is estimated as the half-distance of this segment of intersection.

P3p

Po P1

oc:m/\ / \Ocam

Figure B.3. Triangulation of 2 image points using the middle-point algorithm
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Middle-point triangulation is discouraged because it is neither affine nor projective
invariant [46]. This is however not a concerned because Euclidean reconstruction is used
for multi-camera calibration. Hartley denoted that, even for Euclidean reconstruction,
other linear methods [46] surpass middie-point triangulation. Nevertheless, middle-point
triangulation is used in specific areas of our multi-camera calibration procedure. In
particular, it is usecf in section 4.3.3 to disambiguate the four-fold solution obtained from
fundamental matrix decomposition. For this particular application, the magnitude of the
segment of intersection’s half-distance is used to quantify the triangulation’s precision
and, thus, to disambiguate special cases of camera pose where two out of four solutions
yield to a triangulated point simultaneously in front of both cameras. Middle point
triangulation is also used in section 4.3.4 to build the graph of cameras with consistent
pair-wise scaling. This particular use of middle-point triangulation deals with generalized
3D vector intersection rather than the intersection of back-projected image points. The

logic, however, remains the same.
The process of middle point triangulation is described as followed:

1) The inverse of the perspective equation (2.2), presented in section 2.4.1, is
applied to back-project Po=(X0,¥0,1)" and Pi=(x1,y1,1)" in 3D space. In equation
(B.1), Ko and K| are the intrinsic matrices of both cameras. Py and P; are the
image projections of P3p with adequate radial and tangential lens distortion
compensation. Pgmo and Peam are the back-projected 3D points, in both views,

and they are known up to a depth ambiguity.

PcamO = KO_IPO
(B.1)

Pcaml = KI-IPI

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2) Then Peamo and Peami are expressed with respect to the global reference frame
using the extrinsic camera parameters of both cameras (Ro, To) and (Ry, T1).

P

T T
worido = Ro” Peamo —Ro T

(B.2)
R'T,

Popuas =R Pt —
3) With the knowledge of Pyongo and Pygnar, the two 3D vectors to be intersected
(vo and v;) are computed as well as the translation between the two cameras
(to1). In equation (B.3), Ocamo and Ocmi are the optical centers of the two
cameras and they are expressed with respect to the world reference frame.
Thus, 0, =-R,"T,and O, =-R,T,.
Vo = Proriao ~ Ocamo

Vi = Poniar = Ocam (B.3)

tOl = Ocaml - OcamO

4) With the knowledge of v, v and to;, the problem of middle-point triangulation
consists in solving a linear system of equations [52] as follows:

avy =bwv, +c.(vyXv)) =ty (B.4)

5) Inequation (B.4), a, b and c are found such that:
a= det([to, v, (v le)])

d
b= det([vo to (Vo Xw )])
d (B.5)
c= detlvy —v, t0))
= .

where d =det(y, -v, ¥oxv))

6) Having solved the linear system of equations (B.4), the segment of intersection
is described by two points, expressed with respect to the camera O frame.

P

segmentA = a'vo

(B.6)
P

segmentB

=bwv, tty
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7) The actual reconstructed 3D point corresponds to the middle point between
Psegmenta and Pgegmens. The magnitude of this half-distance is also calculated and
serves as a metric to quantify the triangulation’s precision.

P

__ ¥ segmentB —
cam0 2

P

segmentA

P3d

B.7)
HalfDistance = EuclideanDistance(P;p lcamo s Psegmenta)

8) In order to express P3p in terms of world coordinates, rather than with respect to
the camera 0 frame, a final transformation is required:

Py = P3d|mm0 _RoTTo (B.8)

Linear-LS Triangulation

Besides middle-point triangulation, the use of Linear Least-Square (Linear-LS)
triangulation is very common even though it remains less accurate than iterative methods
[46]. In our multi-camera calibration procedure, Linear-LS triangulation is used, in
section 4.3.6, to reconstruct the cloud of virtual calibration points (in 3D) which becomes
an input to the bundle adjustment. The use of a linear over an iterative method is
preferred, for speed of computation. Also, triangulated calibration points do not need to
be iteratively optimized, because this task is already performed by the bundle
adjustment. Furthermore, at this point, the camera calibration parameters, used for
triangulation, are imprecise anyway. Linear-LS is also preferred over middle-point
triangulation for this specific task because it can be easily generalized to the case of

multi-camera triangulation (more than 2 views), as shown in Figure B.4.
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Ocamo

Po

e Pap

+p1

I

Ocam1

P2

RS

Figure B.4. Triangulation of multiple image points using the linear-LS algorithm

Steps to perform Linear-LS triangulation of N image matches (N > 2) are given as

follows:

1) A 3x4 transformation matrix (C;) for each camera is first computed, from the

intrinsic matrix (K;) and the extrinsic parameters (R; | Ti) such that:

C =K, '[Ri [T:]

(B.9)

2) The camera matrices allow the projection of a 3D point in each image view

such that P,, ,=C, -[Pi"]. Hartley [33] solves the triangulation using an over-

P

determined linear system of equations of the form A [ 1D ] =0 where:

x,Co(3,)7 -Co(L,)"
yOCO (3! :)T —Co (27:)T
xC, (3,07 -C, (L))"
y1C1(3’:)T —C1(2’:)T

Xy Crha (3 —Ch )"

| Yv-1Cna (3,97 =Cy (2 D) i
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In equation (B.10), Ci(a,))" represents the o™ row of C; (the i™ camera matrix)

expressed as a 1x4 row vector and (x;, y;) are the image coordinates in view i.

3) The least-square solution to this system of equations is obtained from singular
value decomposition of A such that:

A=USVT (B.11)

4) The last column of V corresponds to P3p and needs to be normalized to retrieve
the form [x y z 1]T, that is:
vil,4)/vV4.4)
_veaHIv@Es
“|v34)IV4d) (B.12)
1

Py =

s T T =

Remarks:

The dimensions of the A matrix is 2Nx4 as there exist two linearly independent

equations per camera. These are obtained from the standard projection camera equation:

% P3D
%, |=¢,- (B.13)

1
X3

Developing the matrix multiplication C, [ 31" ] , we obtain 3 equations:

Psp | P
x =c,-(1,:)T-[ 310 «=>x1-—C,-(1,:)T-I: 310}0

P. P.
X =c,-(2,:)T-[ 31’) @xz—C,-(2,:)T-[ 31”]=0 (B.14)

Pp] P
x3=C,-(3,:)T-[ -’iD @x?,—Ci(S,:)T.I: 310}0

-
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With the substitution of x = x;/X3 and y = Xo/x3 (pixel coordinates), this system is

reduced to two linearly independent equations such that:

P P
xCi(3,:)T.[ ib}—ci(l,:)T{ iD]=0

(B.15)

yG;3.)" [Pﬂ -G [”31”] =0

Finally, all {P31D }terms are cancelled, thus retrieving the form presented earlier in

the A matrix of equation (B.10):

xC; 3,97 —C;1,)T =0
(B.16)
yC; 3T -C; (20T =0
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Appendix C. Average Reprojection Error Calculation

The average reprojection error is a useful metric to assess the calibration accuracy
of a multi-camera system. It consists of performing, in cycle, the reconstruction and
reprojection of a large database of image matches in order to determine the average

displacement of the reprojected over the measured (original) image points in each view.

Figure C.1 shows an example where Py, P; and P, correspond to one image match
or, in other words, the image coordinates of P3p, a 3D calibration point, in multiple
views. These image points are triangulated using the Linear-LS method elaborated in
Appendix B. If the multi-camera calibration is imprecise, the reconstructed position of
P3p will inevitably be imprecise as well. Consequently, Psp will be reprojected back into
each image view with an accumulated error caused by both, the inaccurate estimation of

P3p and the inaccuracy of calibration parameters used to reproject P3p.

P3p
°

!

Figure C.1. A triangulated 3D point using imprecise camera calibration

Ocam1

Figure C.2 shows the projection of P3p back into each image plane. #,, P, and P, are

the reprojected points and P, , P,and P, are the original (measured) points. The reprojection
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error is calculated as the Euclidian distance between the original and the measured point,

in each view separately:

error, =B -B@) +{Em-E o)) (C.1)

Pap

1

Ocam1

Figure C.2. A triangulated 3D point is reprojected back into each image plane with an error

Repeating this procedure over a large database of image matches provides a
meaningful assessment of the calibration accuracy. When a multi-camera system is
precisely calibrated, the calibration points are reconstructed, from triangulation, and
reprojected back into each image plane with very little displacement. In Chapter 4, it has
been shown that precise multi-camera calibration can yield to an average reprojection

error below %2 pixel.
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